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Abstract—Various methods have been put forward to perform automatic social-based event detection and description . Yet, most of 

them do not capture the semantic meaning embedded in online  social media data, which are usually highly heterogeneous and 
unstructured, and do not identify event relationships (e .g., car accident temporally occurs  after storm, and geographically occurs near 

soccer match). To address this problem, we introduce a generic Social-based Event Detection, Description, and Linkage framework 

titled SEDDaL, taking as input: a collection of social media objects from heterogeneous sources (e .g., Flickr, YouTube, and Twitter), 

and producing as output a collection of semantically meaningful events interconnected with spatial, temporal, and semantic 

relationships. The latter are required as the building blocks for event-based Collective Knowledge (CK) organization, where CK 

underlines the combination of all known data, information, and metadata conce rning a given concept or event. SEDDaL consists of four 

main modules for: i) describing social media objects in a generic Metadata Representation Space Model (MRSM) consisting of three 

composite  dimensions: temporal, spatial, and semantic, ii) evaluating the similarity between social media objects’ descriptions following 

MRSM, iii) detecting events from similar social media objects using an adapted unsupervised learning algorithm, where events are 

represented as clusters of objects in MRSM, and iv) identifying directional, metric, and topological relationships between events 

following MRSM’s dimensions. We believe this is the first study to provide a generi c model for describing semantic-aware events and 

their relationships extracted from social  metadata on the Web. Experimental results confirm the quality and potential of our approach. 

Keywords—Social Media, Metadata, Semantics, Similarity Evaluation, Event Detection, Event Relationships, Collective Knowledge . 
 

1. Introduction 

Nowadays, emerging technologies such as Smart-phones, Wireless Internet, as well as Web and Mobile Services allow users to 
create, annotate, and share social data on the Web at an unprecedented and increasing pace. These technologies have transformed 
users from static data consumers during the 1990s (i.e., accessing static Web pages) to intelligent producers and proactive sensors 

of information during the 2010s (i.e., producing blogs, publishing and annotating images and videos, commenting on tweets, 
posting opinions, etc.), where most information being shared is multimedia and associated to events  [22]. Yet, attaining the next  
stage in Web engineering, i.e., the so-called Intelligent Web: allowing meaningful human-machine and machine-machine 

collaboration within a ubiquitous computing environment, requires another breakthrough: allowing the sharing and organization 
of collective knowledge (CK) [91], where CK underlines the combination of all known data, information, and metadata 

concerning a given concept or event. In this context, the first step would be to extract and describe the meanings of events and 
their relationships, to be able to organize their CK later on. 

There is no universal definition of an event, but an intuitive notion usually adopted on the Wed and in social media is that of 

a social-based event which can be viewed as a given observable occurrence at a certain time and place that interests a group of 
people (e.g., soccer match, car accident, heavy storm, presidential debate) [57, 83]. Usually participants or observers of an event 
capture multimedia data (image, video, audio, etc), annotate, publish, and share them online to describe the event (e.g., videos 

from the soccer match, pictures of the storm, opinions about the presidential debate, etc.) [45]. However, annotations of similar 
social media objects (e.g., similar images taken about the same storm) might be heterogeneous both in content and format, and 

would depend on the knowledge and experience of the annotator (e.g., an expert meteorologist would describe a storm or a heat 
wave differently from a non-expert observer). Hence, handling diverse and heterogeneous social media descriptions to identify 
and describe meaningful events remains a major problem. 

In this context, various methods have been put forward to perform automatic social-based event detection (cf. literature 
review in Section 3). Yet, most of them do not capture the semantic meaning (concept definitions) associated with social media 
data and only focus on their syntactic textual descriptions (e.g., term-frequency weighting), thus missing their semantic 

relatedness, e.g., [58, 73, 86]). Also, most existing methods do not address the issue of identifying meaningful relationships 
between events (e.g., car accident temporally occurs  after storm, and geographically occurs near soccer match), which we 



 

 

consider as a central requirement toward event-based CK organization. In addition, most methods are domain dependent and 
consider certain kinds of application specific information (e.g., tweets only, photos only), e.g., [12, 52, 73], without providing 
formal definitions of the temporal, spatial, and textual features considered, such as feature dimensionality, points of origin, 

granularity, coverages, and dedicated similarity measures.  
Hence, a new approach is needed to effectively describe social media objects in a generic representation model with formal 

definitions of all relevant features and their properties , considering the unstructured and noisy nature of the data, in order to detect 

and describe events and their relationships. For this purpose, we introduce our Social-based Event Detection, Description and 
Linkage framework titled SEDDaL, taking as input: a collection of social media objects from heterogeneous sources, and then 
producing as output a collection of semantically meaningful events interconnected with meaningful relationships. SEDDaL 

consists of four main modules for: i) describing social media objects in a generic Metadata Representation Space Model (MRSM) 
consisting of three composite dimensions: temporal, spatial, and semantic, ii) evaluating the similarity between social media 

object descriptions following MRSM, iii) detecting events from similar social media objects using an adapted unsupervised 
learning algorithm, where events are represented as clusters of objects described in MRSM, and iv) identifying directional, metric, 
and topological relationships between events following MRSM‟s dimensions. We believe this is the first study to formally define 

a generic model (with its dimensions, properties, and similarity measures), for detecting and describing semantic-aware social 
media events and identifying their relationships.  

The rest of the paper is structured as follows. Section 2 describes some basic concepts, and then presents a motivating 

scenario highlighting the main requirements toward event-based CK organization. Section 3 briefly reviews methods related to 
event detection from online social media data. Section 4 describes our SEDDaL framework and its different modules. 

Experimental results are described in Section 5, before concluding in Section 6 with future research directions.  
 

2. Background, Motivation, and Requirements 
 

In this section, we first provide a brief background description of some of the main concepts related to event-based CK 
organization (Section 2.1), and then describe a motivation scenario (Section 2.2) highlighting some of the main needs and 

requirements (Section 2.3) that we aim to fulfill in our proposal. 

2.1. Event-based Collective Knowledge (CK) 

To better understand the issues and challenges of event-based CK organization on the Web, we first need to distinguish the 
concepts of: data, information, metadata, knowledge, and event. The main difference lies in the level of abstraction of each 
concept. Data is viewed as the lowest abstraction, consisting of the most basic (raw) representation of facts, entities, or concepts, 

and contains no meaning (e.g., ―2001‖ is considered as a number consisting of 4 digits). For the data to be informative, it must be 
interpreted and given a well-defined meaning (such as ―the year of announcement of the Semantic Web") and can be therefore 
qualified as information [23]. In this context, metadata is viewed as a description about the data and information (such as who 

gave the data/information – e.g., Wikipedia, when was the data/information given – e.g., published in 2002, etc.) [23]. At a higher 
level of abstraction, knowledge is viewed as the combination of all known data, information, and metadata concerning a given 

concept or fact, as well as the semantic links between them [44, 106] (like knowing that ―the year of announcement of the 
Semantic Web" is ―2001", following Wikipedia in an article published in 2002).  

A social-based event can be viewed as a special form of knowledge defined following the 5W1H model [46, 47, 83]: When, 

Where, What, Who, Why and How aspects, describing an occurrence of a social or natural phenomenon (what, e.g., soccer match, 
car accident, heavy storm, or presidential debate) of interest to a group of people on the Web (who) happening within a certain 
time (when) and location (where, e.g., stadium, road, city, or amphitheater), having a certain description (why) and 

identification/traceability (how) from the set of social media objects describing it [45, 56]. In this context, event-based CK is 
viewed as a development of knowledge assets or (semantic) information resources from a distributed pool of contributions, 

produced by human users or software agents, representing consensus on the descriptions and relationships between the events 
forming the CK [70]. In other words, an event-based CK repository can be viewed as a collection of events, with their 
descriptions, relationships, and underlying social media data, portrayed following a common representation model that can be 

used for automated reasoning by software agents [25, 91]. 
Yet, extracting and organizing event-based knowledge from social media data comes with many challenges which we 

illustrate below using a real world motivational scenario. 

2.2. Motivation Scenario 

Climate change due to global warming increases the probability of some types of unusual weather. One effect of global warming 

is the occurrence of heavy rainfall. Excessive rain during short periods of time can cause flash floods. A flood may cause 
disruptions of basic utility services such as transportation, electricity, water, and telecommunication. When such an event o ccurs 
in a city, residents often capture different kinds of multimedia data, annotate, publish, and share them on social media sites like 

Facebook, Flickr, Twitter, or YouTube (cf. Figure 1). They might also post comments on social media to share their appreciation 



 

 

and/or criticism regarding the level of preparedness and action that should have been taken by the city administration to handle 
the observed phenomena. Moreover, local media providers may continually publish news feeds related to the event. 

In order to provide better services to residents, the city administration would largely benefit from organizing and processing 

the CK associated with occurring events. As a result, the city administration would be able to make more adequate decisions and 
take reactive/precautionary measures accordingly. However, user contributed social media contents and metadata on the Web 
often consist of objects of different types (images, animations, videos, etc.), with different metadata formats (XML, JSON, txt, 

etc.), coming from different sources (Flickr, YouTube, Twitter, etc.), annotated by different users with different backgrounds 
(e.g., novice, experts, scientists, etc.) who can sometimes produce inaccurate information or omit relevant information (missing 
certain event descriptive features following the 5W1H model), all of which would affect CK organization.  

 
 

 

 
 

 

 
 

 
 

<photoid="14646512184"  camera=""> 
 <exif tag="Keywords" label="Keywords"> 
 <raw>Torrential Rainfall</raw><raw>Cloudburst</raw>    
 <raw>rainstorm</raw></exif> 
 <exif tag="DateCreated" label="Date Created"> 
 <raw>2014:07:07</raw></exif> 
 <exif tag="TimeCreated" label="Time Created"> 

<raw>8:56:29+3:00</raw></exif> 
 <exif tag="DateUploaded" label="Date Uploaded"> 

<raw>2014:07:07</raw></exif> 
 <exif tag="TimeUploaded" label="Time Uploaded"> 

<raw>9:12:10+3:00</raw></exif> 
 <exif tag="By-line" label="By-line"> 

<raw>Martin Meissner</raw></exif> 
 <exif tag="City" label="City"> 
   <raw>Addis Ababa</raw></exif> 
 <exif tag="Country-PrimaryLocationName"   
 label="Country-Primary Location Name"> 

<raw>Ethiopia</raw></exif> 
 <exif tag="Caption-Abstract"  
      label="Caption- Abstract"> 

<raw>July 7, 2014, at around 3:00pm in the  middle 
of the Meskel Square Following the short but 
torrential rain, the lane that stretches from Bole 
International Airport to Meskel Square, was 
covered by an about 200-metre long stream</raw> 

 </exif> 
</photo> 

 

 
 

 
<video> 
 <video_id>544007664 </video_id> 
 <yt_id>sJBbE4svRaQ</yt_id> 
 <title> Creating of Small business in Addis 
Ababa</title> 
<description> This is a flood caused by a rainstorm for 
less than an hour. Heavy rain also created pockets of 
small businesses. This problem created a business 
instantly for street boys… </description> 
 <username>I'm a Melagoodo.</username> 
 <upload_time>2014-07-7 14:48:04</upload_time> 
 <duration>62</duration> 
 <viewcount>26217</viewcount> 
 <locationlatitude :” 9° 0' 19.4436'' N”  
         longitude:” 38° 45' 48.9996'' E” /> 
 <tags> 
   <tag>a heavy rain</tag> 
   <tag>thundershower</tag>  
   <tag>downpour</tag>  
   <tag>rainfall</tag> 
</tags> 
 <video_url>http://www.youtube.com/watch?v=sbE4svRaQ  
   </video_url> 
 <thumb_url>http://i1.ytimg.com/vi/l6uz28/0.jpg 
   </thumb_url> 

</video> 

 

  

 
{ 
"text":"A terrible evening Addis Ababa (around Olompia) 
today, rainstorm cause flood in the new road",  
"cat":[1], "keywords":[“AddisAbaba", “Ethiopia”, 
“Flood", “Inundation”, “Traffic Chaos"], 
"location":{"lng“:38.763611,"lat":9.005401}, 
"screen_name_lower":“Muradissa","geoflag":false, 
"type":1, "entities": 
 { 

"urls":[{"expanded_url":"http://Twitter.com/download/  
       android&quot;","url":""}], 
"hashtags":[{"text":“FloodinAddis"}], 
"user_mentions":[{"screen_name":""}] 

 }, 
"id":489333693576536066, 
"timestamp":1404711029000, 
"source":"web", "trans_text":"", "retweet_count":177, 

"user": 
 { 
"location":“Addis Ababa", "verified":false, 
"screen_name":"Muradissa" 

  },  
  "tweet-lang":9 
} 

 

a. Photo post and its metadata in XML format 
extract ed from Flickr. 

 

 b. Video post and its metadata in XML format 
extract ed from YouTube. 

 c. Tweet and its metadata in JSON format 
extract ed from Twitter. 

 

Figure 1. Sample social media objects and their metadata obtained from three different social media sources. 

 

Consider the sample social media objects in Figure 1, obtained from three different social media sources (Flickr, YouTube, 

and Twitter), along with their metadata descriptions. Flickr and YouTube use the eXtensible Markup Language (XML) to disclose 
user contributed contents and metadata, whereas Twitter uses JavaScript Object Notation (JSON). They not only have different 
data representation models, but also use different tag labels and formats to represent semantically similar (or identical) contents. 

For instance, Flickr and YouTube use different XML data element names, attribute names, and document structures to represent 
the date of creation/uploading of social media objects1. Moreover, the date, time, and location metadata can be represented in a 
different format specific to each social media service2. Similarly, the location information associated with a social media object 

might also be represented in different formats3. In addition, information published by different social media services can vary in 

                                                             
1  With Flickr: <exif tag="DateUploaded" label="Date Uploaded"><raw> 2014:07:07</raw></exif><exif tag="TimeUploaded" label="Time 

Uploaded"> <raw>9:12:10+3:00</raw></exif>, with YouTube:<upload_time> 2014-07-7 14:48:04 </upload_time> , and with Twitter: 

"timestamp":1316656366000. 
2  YouTube represents upload date in the form o f a  co mplete date along with hours, minutes, and seconds (i.e., YYYY-MM-DD hh:mm:ss) whereas Flickr represents upload 

date and upload time in the form o f a  long date (i.e., YYYY:MM:DD) and a separate time  representation (in hours, minutes and seconds) following the Coordinated 

Universal Time (U TC) re ferential (i.e., hh:mm:ss+ UTC). Twitter represents the date/time of a social media object following Unix time, also known as POSIX time o r 

Epoch time stamp, i.e ., a  single signed integer number that represents the number of seconds elapsed  since midnight (00:00:00 UTC) of  January 1, 1970 (e.g., 

1316656366000 represents the ISO 8601 date format o f 2016-7-13  5:6:33 GMT) 
3   YouTube represents geographic coordinates following the degrees, minutes, and seconds format (i.e .,  <locationlatitude:“ 9° 0' 19.4436'' N” longitude:” 

38° 45' 48.9996'' E”/> ). Yet, Twitter represents location following the decimal degrees format (i.e., "location":{"lng“:38.763611,"lat":9.005401} ) , 

whereas Flickr uses a  predefined element (raw)  and predefined attributes (tag and label) to represent the location information (i.e., <exif tag="City" 



 

 

content and structure4. Most importantly, different users might publish identical objects (on the same or different social sites) with 
very different annotations, using free text descriptions or tags which might be syntactically different, yet semantically related, 
following their own style of writing, vocabulary, and experience in annotation (e.g., an expert meteorologist would describe a 

storm or a heat wave differently from a non-expert observer). 
 

2.3. Main Requirements 

In this context, handling diverse, heterogeneous, and sometimes incomplete social metadata to identify and describe meaningful 

events highlights various requirements that need to be fulfilled: 
1. Converting the source metadata into a uniform data model that is generic enough to model social media objects following a 

high-level representation5 suitable/adapted for the purpose of event detection and description,  

2. Computing/evaluating the similarity/relatedness between social media objects given their adapted high-level 
representation, to group related objects together and identify corresponding events (e.g., recognizing and aggregating 

similar flood images published with related metadata, might help identify a flood event), 
3. Accounting for the relative importance or weight of different event discriminating features (i.e., deciding which dimension 

of the 5W1H model is more important) in the event detection process , and adapting them following the user‟s needs (e.g, 
the user might be interested in identifying events considering their geographic proximity (where), regardless of their 
temporal (when) or semantic (what) descriptions),  

4. Handling the semantic meaning of the textual descriptions of event discriminating features (e.g., how to understand the 
semantic relatedness and differences between terms hailstorm, rainstorm, and blizzard, which could be used by different 
users in describing the same or similar events) remains a central need in performing event detection from social media data, 

5. Last but not least, identifying the different relationships that can occur between events (e.g., an event occurring before or 
after another, far from or near to another), considering the different available event descriptive features (e.g., temporal 

(when), spatial (where), semantic (what)), is also required as a building block for event-based CK organization. 
 

The above requirements are partly overlooked by most existing event detection methods as shown in the following section. 
 

3. Related Works 

Event detection methods from social media data can be categorized as unsupervised (clustering-based), supervised (classification-
based), and hybrid approaches (combining clustering and classification processes). We briefly review these approaches in light of 

the main requirements identified in the previous section. Readers can refer to [102] for a detailed review on event mining. 

3.1. Unsupervised Approaches  

Clustering or unsupervised classification is the process of organizing or grouping a collection of objects into groups (calle d 

clusters) based on their similarity values. Similarity is evaluated as the inverse of a distance function in a certain referential space 
[93, 95]. Objects in the same group or cluster are more similar to (less distant from) each other than to those in other groups or 
clusters. Clustering has been used for various applications (cf. reviews in [1, 5]) including event detection from social media data. 

The authors in [52] propose an approach for detecting events from photos on Flickr by exploiting the tags supplied by users. 
The method consists of three steps: (1) identifying whether tags are related to events or not based on their temporal and spatial 
distributions; (2) detecting event-related tags to classify them into periodic or a-periodic event tags; and (3) retrieving the set of 

photos for each tag representing an event. A similar data-driven approach in described in [75] where images are first clustered 
based on their spatio-temporal information (where and when), where images which do not have spatial information are left out as 

singleton clusters. The generated and singleton clusters are then compared considering the images‟ creator (who), title, 
description, tags, and visual information (what), to merge similar clusters together. The proposed solutions in [52, 75] use the 
Jaccard (syntactic) similarity measure to compare textual descriptions, and thus do not address their semantic meaning. Also, the 

methods do not highlight the impact of aggregating different feature similarity measures in the event detection process. Another 
data-driven approach is developed in [58], where the authors build on an original work from Microsoft Research [72] named 
PhotoTOC. Clustering is performed using a combination of time-stamps (when), spatial information (where), textual description 

                                                                                                                                                                                                                           
label="City"> <raw> Addis Ababa </raw></exif><exif tag="Country-PrimaryLocationName" label="Country-Primary Location 

Name"><raw>Ethiopia</raw></exif>). 
4  For example, YouTube only provides uploaded time stamp , whereas Flickr captures both created and uploaded time stamps. Also, YouTube represents user contributed 

textual content with different XML elements (i.e.,  <tags><tag> a heavy rain </tag><tag> thunder shower </tag><tag> downpour </tag><tag> 
rainfall </tag></tags> ,  and <description> This is a flood caused by an intense rain for less than an hour. It also created 
pockets of small businesses…</description>).  Yet, Twitter represents user contributed textual content as keywords in JSON  (i.e., 

"keywords":[“AddisAbaba", “Ethiopia”, “Flood", “Inundation”, “Traffic Chaos"]),  whereas Flickr uses a predefined element (raw) and predefined 

attributes (tag and label) to represent user contributed textual content (i.e., <exif tag=“Keywords” label=“Keywords”><raw> Torrential Rainfall 
</raw> <raw> Cloudburst </raw><raw> rainstorm </raw></exif>, and <exif tag=“Caption-Abstract” label=“Caption-Abstract”><raw> 

It was on July 7, 2014, at around 3:00pm just in the middle of the Meskel Square…</raw></exif>). 
5   In contrast with the low level features (such as color histogram) o f multimedia objects, the high level features can be user  contributed contents and metadata such as title, 

description, tags, comments, time stamps and location data. 



 

 

labels (what), and the photo creator‟s information (who). A training dataset is used to estimate the relevance of each feature type 
as well as the merging threshold for the combined feature score. Yet, similarly to its predecessors, the solution in [58] does not 
consider the semantic meaning of the social media objects‟ textual descriptions, but rather evaluates their syntactic similarities. In 

[53], the authors attempt to identify social media events based on the assumption that an event happening at a certain place and 
time, will most probably be coined with a large number of photos and videos taken and shared in different social media sites. Yet, 
the proposed approach requires a certain number of initial seed photos (i.e., the product of the number of shared images and 

owners who are posting those images should not be less than a threshold value obtained empirically) to effectively detect events. 
In contrast with most of the above studies, few solutions in [38, 59, 104] have (partly) considered the semantics of social 

media objects in the event detection process. The authors in [38] put forward a framework to semantically structure an object 

collection in social media applications. They use WordNet-based semantic similarity measures [18] where WordNet is utilized as 
a reference lexical knowledge base [63]. Primarily, only the spatial information (where) is used to cluster the object collection. 

Then the semantic similarities of the objects‟ descriptive tags (what) are utilized to merge the produced clusters . A similar 
approach is developed in [104], where initial clusters are identified based on creator (who) and temporal (when) information, and 
then the clusters are merged using location distance (where), as well as topic6 and term syntactic similarity. In [59], the authors 

expand the images‟ textual descriptions by identifying the synonyms and hypernyms of every term, producing expanded bag-of-
words representations which are then compared using the cosine syntactic similarity measure. Yet, the solutions in [38, 59, 104] 
do not evaluate the effect of using aggregated similarity measures (combining different features) on the event detection process . 

Also, none of the solutions mentioned above addresses the issue of identifying event relationships.  
 

3.2. Supervised Approaches  

Various supervised or classification-based solutions have also been developed to perform event detection from social media data. 
We recall that classification or supervised learning is the process of organizing a collection of objects into pre-classified groups or 
labeled patterns based on their similarities with the training patterns [48]. Classification methods have been used for a variety of 

applications in data mining (cf. reviews in [48, 49]) including event detection from Web and social media data. [90] 
In [10], the authors introduce a variety of text-based query building strategies designed to automatically augment user-

contributed information for planned events with dynamically generated Twitter content. A planned event is described using time  
(when), location (where), and textual metadata (what, e.g., title, description, retrieved messaged). Queries include different 
combinations of features, such as location+title, title+description, location+time+title, etc. Term-frequency analysis is used, 

treating a predefined event's textual metadata and any retrieved tweets from the previous step as “ground truth" data describing 
the event. While the authors consider different combinations of features, nonetheless, they do not empirically evaluate their 
impact on the event detection/augmentation process. Also, the approach does not consider the semantic meaning of textual 

descriptions and only focuses on term-frequency analysis. The authors in [54] present a method that combines semantic inference 
and visual analysis for finding events. They present a large dataset composed of semantic descriptions of events, photos , and 

videos interlinked with the larger Linked Open Data (LOD) cloud. They use special tags (e.g., lastfm:event=XXX, 
upcoming:event=XXX) associated with their social media data, in order to detect events, an approach which is only applicable for 
planned (pre-defined) events posted (in advance) on event aggregating platforms (e.g., anticipated soccer match, or awaited heat 

wave, which are expected to occur on certain dates or in certain locations). Yet, the proposed solution does not identify 
instantaneous/unknown events 7  such as an unexpected flood or car accident. Also, the authors do not show the effect of 
aggregating different similarity measures to compare different event descriptive features in the event detection process. 

The authors in [11] use event aggregation platforms (such as Last.fm, EventBrite, LinkedIn and Facebook events) to generate 
planned events. In this work, only social media contents which have location (where) and time (when) information are considered 

for the purpose of detecting events. As mentioned before, we argue that time and geo-location information are not enough to 
effectively detect events, since: i) some social media authoring tools lack location recording components, and ii) the timest amp 
values of social media contents might be distorted or noisy due to the particular configurations of media capturing tools. Note that 

the work in [11] focuses on generating events based on predefined preferences stated in advance in existing event aggregation 
platforms. Moreover, the authors do not consider the semantic meaning of social media objects‟ textual descriptions, nor do they 
discuss the impact of an aggregated similarity measure combining different event descriptive features in the event detection 

process. Also, the issue of identifying event relationships is not addressed in the above mentioned solutions. 
 

                                                             
6  The authors extract so-called implicit semantic concepts, i.e., latent semantic concepts, inferred fro m the statistical and algebraic analysis of image textual descriptions 

(the authors in [104] utilize Latent Dirichlet Allocation), following the basic idea that images that share many textual terms in co mmon are sema ntically closer others. 

Implicit concepts  are represented numerically as hyper-dimensions in a latent semantic hyperspace, and do not align with any human-interpretable concept [90]. 
7  Unknown events are events which are  unexpected and are  not being monitored by users (e.g.,  an  unexpected accident, or an unexpected  r ainstorm). In contrast, a kno wn 

event is one that is expected or that is being monitored by users (e.g., an expected soccer match or a pre -scheduled music concert). On one hand, detecting unknown 

events usually requires the use of unsupervised learning techniques (such as the one utilized in our study) where the sy stem identifies events without any previous 

knowledge about their existence or nature. On the other hand, supervised learning methods are usually utilized to detect known events, where users provide the system 

with some description about the nature of thei r target events as input (e.g., monitoring thunderstorms or car accidents, where each event would be described with some 
metadata), and then the system identifies the corresponding events accordingly (e.g., identifying all occurring thunderstorms , or  all occurring car accidents), by matching 

the incoming social media objects‟  descriptions with those of the pre-defined events.  



 

 

3.3. Hybrid Approaches 

Few hybrid solutions, combining supervised and unsupervised techniques to perform social event detection, have been proposed. 
In [12], the authors utilize ensemble and classification-based similarity learning techniques to detect events. Both ensemble and 
classification-based similarity learning techniques are used in conjunction with an incremental clustering algorithm to generate a 

clustering solution. Yet, the authors do not discuss the effects and impact of spatial and semantic features of the shared social 
media objects in the event detection task. In [100], the authors propose a fusion-based method to detect and identify events. They 
use Factorization Machines (FMs)8 to learn the similarity between pairs of social images, considering their creation time (when), 

location (where), associated tags and textual descriptions (what), as well as authorship (who). The latter are then run through an 
incremental clustering process to identify groups of related images where every group designates an event. This work considers 

image features holistically, and does not consider the effect of individual features in the event detection process. Moreover, it  
processes image textual descriptions syntactically and does consider their semantic meaning. The authors in [71] use the Chinese 

Restaurant Process to cluster a collection of photos and videos from social media applications. They assume that objects arrive 
sequentially in a streamed fashion, where every new object is compared with the already existing objects based on a probability 
model constructed from the training data set. Then, a single pass incremental clustering algorithm is used to merge the object with 

the clusters (events) which already exist, or to create a new cluster (event) around it. Yet, the authors in [71] do not evaluate the 
impact of aggregating temporal and spatial feature similarity in the event detection process. Moreover, they do not consider 
textual descriptions or semantic meaning, and only focus on temporal and spatial features.  

In [86], the authors introduce a constrained clustering method, adapted from the spherical k-Means algorithm [85], to detect 
events from a social media object collection. The number of initial clusters  k  is set in the training phase. Cosine similarity is used 

to measure the distance between an object and the cluster centroids based on the temporal, spatial, and textual features combined 
into an aggregate linear similarity measure. Yet, the approach does not consider the semantic aspect of textual features  and rather 
computes syntactic similarity using TF-IDF9 term weights. A similar solution is described in [69], where the authors introduce a 

user-centric data structure, named UT-image (user-time image), to store a social image collection‟s metadata. The whole metadata 
set is turned into a UT-image, so that each row of an image contains all records that belong to one user. Then after, cluster 

merging is performed considering temporal (when), spatial (where), or textual (tag/title/description, i.e., what) feature similarity 
thresholds set by the user. The proposed method does not consider the effect of an aggregated similarity measure combining 
different features together in cluster merging. In addition, the authors themselves state that using the Jaccard (syntactic similarity) 

measure to compare the textual features fails to address the challenge of capturing the semantics of collaborative tags. [100] 
 

3.4. Event-based Knowledge Organization 

Recently, there has been an increasing interest in automatic knowledge graph construction, where most effort has been dedicat ed 
toward the development of statistical models to infer facts about entities in a graph [16]. Some projects have been developed to 

extract knowledge from semi-structured resources such as Wikipedia (cf. DBpedia [14], Freebase [15] or Google Knowledge 
Vault [27]), but the extracted information is centered on collecting facts around entities rather than events. Some works have 
targeted news articles [29], extracting information like persons, organizations, and locations, resulting in a grouping of news 

stories by topics and entities. Another approach in [81] organizes news articles around stories, which imply events, by computing 
word and phrase co-occurrence in a sequence of news articles, producing a chain of news articles that form a story. The authors in  
[50] introduce an approach for automatically extracting named events from news article, while [55, 74] discuss the use of so-

called semantic roles (i.e., who, what, where of an article) to extract related events using hybrid event extraction approaches. In 
[19], the authors model the time, dependency, and reference relationships between so-called component events (i.e., episodes) in 

order to find and understand the “whole picture” of the bigger event. They specifically target the problem of temporal event 
search and introduce a framework for temporal event relationship analysis, studying the dependency between component events 
in the evolution of the bigger event that is targeted by the user query. In a subsequent study in [76], the authors introduce a 

solution to identify the first story of a previously unknown event, combining temporal information, named entity recognition, and 
topic modeling to associate multiple events with news stories, taking into account the events‟ evolution over time. Recent 
methods in [36, 79] extract information from multi-lingual news articles, and convert them to a common representation. The 

authors in [36] use unsupervised clustering to identify related articles in every language separately, using latent semantic indexing 
for article similarity evaluation. Then, a supervised (Support Vector Machine) classifier is used to merge clusters from different 

languages describing the same event, based on manual expert training. In [79], the authors use deep natural language processing 
techniques to extract the different entities in every news article and the events within it. Entities and events are then represented as 
RDF triples (e.g., sentence “Volkswagen acquires Porsche in 2009” is represented as a set of triples: <event1, hasActor, Porsche>, 

<Porsche, AquiredBy, Volkswagen>, <event1, hasTime, 2009>) forming an event-centric knowledge graph.  
The knowledge graph described in [79] and the time dependency relationships in [19] are seemingly the closest to the notions 

of event-based collective knowledge and event relationships described in our study, yet with different objectives and coverages. 

                                                             
8      A Factorization Machine (FM) is a classification model that combines Support Vector Machine (SVM) functionality with matrix f actorization models [100].  
9   Term Frequency – Inverse Document Frequency 



 

 

While the authors in [79] target event extraction from text-rich news articles and linguistic-based entity-event relationships, as 
well as time dependencies between component events and their description of the (bigger picture) target event [19], our present 
study targets text-poor social medial objects  (where the text consists of tags and short comments), and the extraction and 

representation of temporal, spatial, as well as semantic entity-entity relationships, with their directional, metric, and topological 
variants, which are not addressed in - and would be complementary to - the latter studies.  

 
 

3.5. Discussion 

To summarize, most existing event detection methods in the literature either: i) are domain dependent and consider certain 
specific kinds of information (e.g., tweets only, Flickr photos only), e.g., [12, 52, 73], ii) generate events based on predefined 

clues and are not able to identify unknown events  (except for unsupervised methods), e.g., [10, 11, 73], iii) consider event 
descriptive features (e.g., time, space, text) separately and do not combine or evaluate their impact on the event detection process 
(one approach in [100] combines all features holistically, yet without allowing the user to adapt or evaluate the impact of every 

feature separately), or iv) do not (or only partly) consider the semantic meaning associated with social media data and focus on 
syntactic textual descriptions (they use syntactic similarity measures such as Jaccard or cosine, coined with term-frequency 

weighting, thus only capturing the surface level similarity of textual descriptors, and missing their semantic relatedness , e.g., [58, 
69, 73, 86]). Most importantly, most existing methods to our knowledge v) do not address the issue of identifying meaningful 
relationships between events (one approach in [79] identifies linguistic-based entity-event relationships from news articles, which 

would be complementary to this study), and which we consider as a central requirement toward event-based CK organization. 

4. Proposed Framework 

To address the requirements and limitations identified in the previous sections, we introduce SEDDaL, as an unsupervised and 

semantic-aware framework for Social Event Detection, Description and Linkage. SEDDaL‟s overall architecture is depicted in  
Figure 2. It consists of four main modules: i) Metadata Representation Space Model (MRSM) which allows representing the 

source metadata in a uniform and generic data model to describe social media objects and events (addressing requirement #1 in 
Section 2.3), ii) Similarity evaluation module, allowing to compute the similarity/relatedness between social media objects given 
their uniform representation in MRSM, while considering the relative importance of different features (temporal, spatial, and 

semantic) in the similarity evaluation process, and adapting the features‟ weights following the user‟s needs (answering 
requirements #2 and #3), iii) Event detection module built upon MSRM, allowing to group similar/related objects together 
considering the semantic meaning of their textual descriptions (addressing requirement #4), in order to identify corresponding 

events10, and iv) Event relationships identification module, allowing to identify the different relationships that can occur between 
events (directional, metric, and topological), considering the different features (temporal, spatial, and semantic) of interest to the 

user (addressing requirement #5). We describe each of the latter modules in the following sub-sections. 
 
4.1. Metadata Representation Space Model 

Event definitions are theoretically described using the 5W1H model: When, Where, What, Who, Why and How aspects [46, 47, 

83]. Yet, as described in Section 3, only few of these features are practically covered in existing methods, mainly: When (time) 
and Where (location) [11, 43, 73]. In our work, we consider an additional feature: the What (meaning) of the event (the remaining 
Who, Why, and How facets will be covered in a subsequent study). To do so, we define MSRM as a hyperspace consisting of three 

composite dimensions: temporal, spatial, and semantic, describing every social media object (as shown in Figure 3.a). 
Consequently, an event can be represented in the same space, consisting of the collection of objects describing it (cf. Figure 3.b). 
In this subsection, we formally describe each dimension, its coverage, and related properties . 

 

4.1.1. Temporal Dimension 
 

One of the three main features used to describe social media objects following MRSM is their temporal coverage. Here, temporal 
coverage consists of a set of timestamps, where each timestamp is an instance or single occasion related to the object (or event), 

as shown in Figure 4.a. In the following, we formally define the notions of temporal dimension, temporal stamp, temporal 
coverage, and temporal coverage representative points. 

 

Definition 1: [Temporal Dimension ( )]. The temporal dimension   is defined as a finite sequence of discrete and ordered 

primitive temporal units used to represent and interpret a social media object‟s  temporal feature values, formally:   
 

 = {t0, t1, t2, …}      (1) 
 

where ti is the i
th 

temporal unit, and t0
  
the initial temporal value  

                                                             
10 Note that our framework allows describing social media objects and events in the same generic representation space, where the  dimensions’  properties (stamps, coverages, 

and coverage representative points) and associated similarity measures are formally defined. The latter allow for a “ straightforw ard” usage of our solution with typical 
similarity-based machine learning solutions, both supervised and unsupervised: since any su ch solution would require: i) a clear description of the features of the data 

objects (which we provide), as well as ii) proper methods to compare and evaluate the similarity between objects (which we al so provide). 



 

 

 
 

 

  

 

Figure 2. Overall architecture of our SEDDaL framework. 

 

The unit of measurement of the temporal dimension can be chosen by the user (or the system admin) based on the kinds of 
events to be detected. For instance, detecting a soccer player‟s maneuvers in a soccer match would require a small time unit (like 

seconds) whereas detecting thunderstorms and weather-related events can be handled using bigger time units (like hours or days). 
In our study, we consider the International System (IS)‟s second unit (s) as the default time unit, such that the dimension‟s origin 

(t0) is the UNIX time (a.k.a. POSIX or Epoch time, describing instants in time since 00:00:00 UTC, January 1, 1970). 
 

 
 

 

 

 
a. Describing a social media object b. Representing two events 1 and 2 

 
 

Figure 3. Metadata Representation Space Model (MRSM).  
 

 

Definition 2: [Temporal Stamp (t)]. It designates a single discrete value of the temporal dimension     
 

While a still image or a photo object can be described by a single temporal stamp, yet a video object consists of a set of framesets 
and thus requires a range of temporal tamps to designate its temporal coverage. This is formally stated in Definition 3: 
 

Definition 3: [Temporal Coverage (T)]. It is an ordered collection of temporal stamps enclosed within a start and an end stamp, 
describing the temporal coverage of a social media object or event. It is used to represent the duration or capture of an object (e.g., 
a video), or the duration of an event (e.g., duration of a storm). Formally:  
 

T = {ti ∊   | ti ≥ ts  ∧  ti ≤ te } (2)  
 

where ts is the start temporal stamp of T, and te its end temporal stamp   
 

Note that most current multimedia object authoring tools such as smart-phones or video cameras, as well as most social media 
services do not capture the temporal stamp of each object‟s frameset. However, they capture either the start temporal stamp of the 

object, in the form of a created time/date attribute and its duration (e.g., Facebook Live and Snapchat), or they capture the end 
temporal stamp of the object in the form of an upload time/date and its duration (e.g., YouTube). When such two conditions 
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occur, the missing value is computed by considering the upload time as an end temporal stamp, such that the start temporal st amp 
is obtained by subtracting the video duration from end temporal stamp (e.g., in the case of videos uploaded on a social media 
service once captured). Similarly with social media services providing live streaming, the created time can be considered as a start 

temporal stamp, and the end temporal stamp can be then computed by adding the object‟s duration to the start temporal stamp. 
 

Definition 4: [Temporal Coverage Representative Point (tc)]. It is the middle time stamp of a temporal coverage T, representing 
the temporal coverage‟s center of gravity. Formally: 
 

tc(T) = 

     

 
            (3) 

 

where ts is the start temporal stamp of T, and te its end temporal stamp  
 

Temporal coverage representative points are introduced to simplify computations when comparing the temporal coverage of 
social media objects or events: instead of comparing the whole coverages, we compare their representative points (Section 4.2). 

 
 

 

 

 

 

 

a. Temporal dimension b. Composite spatial dimension c. Composite semantic dimension 
 

 

Figure 4. Temporal, spatial, and semantic dimensions in MRSM. 

4.1.2. Spatial Dimension 
 

In this subsection, we describe the spatial dimension of our MRSM model, as well as the related notions of spatial stamp, spatial 
coverage, and spatial coverage representative points required for comparing objects (and events later on): 
 

 

Definition 5: [Spatial Dimension ( )]: The spatial dimension   is defined as a composite dimension consisting of three 

components (sub-dimensions) representing geographical position following Earth‟s geo-referential system, formally:  
 

  = <Ø, λ, h> (4) 
 

where Ø represents the latitude, λ the longitude, and ℎ the altitude sub-dimensions (cf. Figure 4.b)   
 

Similarly to the temporal dimension, the unit of measurement for the spatial (sub) dimension(s) can be chosen by the user (or 
system admin) based on the kinds of events to be detected. For instance, detecting a soccer player‟s maneuvers in a soccer match 
would require a small spatial unit (like meter or foot), whereas detecting thunderstorm or weather-related events would require 

bigger spatial scales (such as kilometers or miles). In our study, we adopt IS„s meter unit (m) as the default unit of spatial 
measure. It can be converted to the DMS scale (Degrees, Minutes, and Seconds) or Radians with the latitude (Ø) and longitude (λ) 
sub-dimensions, based on user preferences. We adopt as point of origin for the spatial dimension the geographic center of the 

surface of the Earth (i.e., the intersection of the Equator and Prime Meridian (0, 0), or Greenwich meridian), even though the 
point of origin can also be modified/chosen by the user (system admin). 

 

Definition 6: [Spatial Stamp ( )]. It is a discrete and instantaneous value of the spatial dimension  , consisting of a triplet:  
 

ℓ= < Ø, λ, h > (5) 
                                   

where Ø, λ, and h designate individual coordinate values defined with respect to (w.r.t.) each of the latitude (Ø  Ø), longitude       

(λ  λ), and altitude (h  h) sub-dimensions of    
 

Definition 7: [Spatial Coverage (L)]. It is the set of spatial stamps designating the surface coverage in which a social media 
object is created (e.g., area in which a video stream is recorded) or in which an event occurs (e.g., area affected by a storm). 

Formally, given the composite spatial dimension  , we define L as: 
 

L = { ℓi  ∊   | ℓi =< Øi, λi, hi >  is a spatial stamp recorded by the social media object authoring tool}  (6) 

                  

 
 

where (Øi  Ø) is the latitude, (λi  λ) the longitude, and (hi  h) the altitude coordinates of every ℓi in    
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For example, a video camera-man can start to capture a video shoot at Addis Ababa (8.9806° N, 38.7578° E, 2355m) and then 
finish when arriving at Adama (8.5263° N, 39.2583° E, 1712m). Following our model, each frameset of the video has its own 
spatial stamp, and thus the spatial coverage of the video object is designated by the set of recorded spatial stamps, from Addis 

Ababa till Adama. Yet, identifying the actual surface covered by the object‟s spatial stamps can vary based on the nature of the 
object created and the metadata provided by the object‟s authoring tool. For instance, identifying the minimum boundary 
coverage (Figure 5.a) can be useful in describing the coverage of a video object describing a storm event, whereas identifying the 

path coverage (Figure 5.c) can be more useful in describing the trail of a video shoot between Addis Ababa and Adama. Hence, 
evaluating the similarity/distance between social media objects‟ spatial coverages (i.e., Sim(o1 ,o2) or Dist (o1 ,o2)) is not trivial. 

 

  
 

 
 

Identi fied based on the Cartesian coordinates of the 

spatial stamps11 using a typical convex hull 

algorithm [20]. 

 

Identi fied based on the Cartesian coordinates of the 

spatial stamps using Gauss's area formula [17]:
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Identi fied based on spatial stamps‟ coordinates 

using the sum of their pair-wise Euclidian 
distances:
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a. Minimum boundary coverage b. Actual surface coverage c. Path (trail) coverage 
 

Figure 5. Different coverages that can be identified from a set of spatial stamps (disregarding the altitude dimension (h) to simplify). 

 

Hence, we introduce the notion of spatial coverage representative point to simplify similarity computations: instead of 
comparing the spatial coverages of two objects (or events), we compare their representative points. We define the representative 
point as the geographic midpoint of a set of spatial stamps, following a well-known procedure from Earth geometry [78]: 

 

Definition 8: [Spatial Coverage Representative Point (ℓc)]. It is the geographic midpoint of a spatial coverage L ={ ℓi ∊   | ℓ i =     

< Øi, λi, hi > }, representing the spatial coverage‟s center of gravity, formally: 
 

ℓc(L) = < Øc, λc, hc > (7) 
 

where: Øc = atan2(Z,        
)  

   

 
, λc = atan2(Y, X)  

   

 
, X = 

   
 
   

 
, Y=

   
 
   

 
, Z = 

   
 
   

 
, and <xi, yi zi> represent the 

Cartesian coordinates of spatial stamp ℓi=< Øi, λi, hi >
9
 where xi = cos(Øi)+cos(i), yi=cos(Øi)+sin(i), zi=sin(Øi), and hc=

i

i

L

( )avg h


 

 

A simplified method to approximate the geographic midpoint is to calculate the mathematical average of the < Ø, λ, h > 
coordinates of the spatial stamps (without translation into Cartesian space). Yet, the latter would only produce accurate results 

with distances less than 400 km (250 miles) [78] (i.e., equivalent to finding the midpoint on a flat rectangular projection map).  
 

4.1.3. Semantic Dimension 
 

While temporal (When) and spatial (Where) information have been considered with many existing event detection methods (cf. 
Section 3), yet the semantic (What) facet has been mostly disregarded. Hence, we include a semantic dimension in our MRSM as 

described hereunder. 
 

Definition 9: [Semantic Dimension ( )]. It is a lexical knowledge based represented as a semantic network made of a set of 

concepts representing groups of words/expressions having identical semantic meanings, and a set of links connecting the concepts 
representing semantic relations (hypernymy (isA), holonymy (partOf),  relatedTo, etc. [18, 63]). We represent it as a labeled 

directed graph  =(N, E, R, f), where: N is the set of nodes designating concepts; E is the set of edges connecting the nodes, i.e., E 
 C×C; R is the set of semantic relations; and f is a function designating the nature of edges in E, i.e., f:E R  

                                                             
11 The Cartesian coordinates (xi, yi, zi) of a spatial stamp i can be obtained from its latitude and longitude coordinates ( Øi, λ i), based on the xy plane lying within 

the equatorial plane, with its origin at the center of the earth. Looking down onto the North Pole, the positive x-axis passes through the Greenwich meridian 

(0°E), the positive y-axis passes through the 90°E meridian, and the positive z-axis extends from the center of the earth through the North Pole [78]. 


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For instance, typical lexical knowledge bases like WordNet [63] or Yago [41] define concepts as so-called synsets: sets of 
synonyms terms (e.g., car, auto, and automobile) having the same gloss description (e.g., a motor vehicle with four wheels), 
connected with various hierarchical relationships (e.g., hypernymy, holonymy, etc.) and cross relationships (e.g., relatedTo, 

derivedFrom, etc.). The unit of the semantic dimension can be a single concept, or a group of concepts, following the user 
(system admin)‟s perception of semantic meaning. For instance, a user might not care to distinguish between concepts sports car, 
sedan, SUV, and muscle car, and might prefer to refer to all of them as the more general concept vehicle. Here, concept vehicle 

would subsume the group of aforementioned concepts, designated as one single semantic unit. In this study, and for the sake of 
simplicity, we consider each individual concept to be a single semantic unit12. The origin of the semantic dimension can be 
defined as the root node of the corresponding semantic network. If the reference semantic network contains multiple root nodes 

(such as in WordNet which has more than 11 root concepts), then we create an artificial root which subsumes all of them. 
 

Definition 10: [Semantic Stamp (s)]. It is an instance or a single concept of the semantic dimension    
 

Definition 11: [Semantic Coverage (S)]. It is a set of concepts (semantic stamps), along with their semantic relationships, 
highlighting the semantic description of a social media object or an event. It can be defined as a sub-graph of the semantic 

dimension  , noted S = ( ,  ), where   N (set of concepts, i.e., nodes) and    E (semantic relations, i.e., edges)   
 

While various methods for comparing pairs of concepts  in a lexical knowledge base have been proposed in the literature, e.g., 

[18, 80], nonetheless, capturing the semantic relatedness between two groups of concepts or concept sub-graphs (e.g., two 
semantic coverages) has attracted less attention. Two complementary approaches have tackled the issue in [26, 30], developed in  

the context of concept similarity of ontology management systems [30], and concept similarity in geographic information systems 
[26]. Yet the solutions in [26, 30] are computationally expensive and require O(N!) time where N is the number of concepts being 
compared. Other studies have addressed similar problems in the context of XML sub-tree semantic analysis and disambiguation 

(comparing groups of XML node labels), e.g., [92, 94], schema mapping (matching schema element/attribute definitions) e.g., [6, 
96], and ontology mapping (matching concept sub-graphs), e.g., [65, 82], yet require at least polynomial O(N

2
) time. Hence to 

simplify mathematical computations , we introduce the notion of semantic coverage representative point: 
 

Definition 12: [Semantic Coverage Representative Point (sc)]. It is a single concept representing the middle semantic stamp of a 

semantic coverage S, which we define as the semantic concept that is, on average, most similar to all other concepts in S: 
  

j j

c i i j i
All s   S All s   S

Avg Avgs = s  S  /   s   S, ( (s, s )) ( (s , s ))SS
Sim Sim

 

     (8) 

 

where SimS (s i, sj) represents the semantic similarity between (concepts) s i and sj (developed in Section 4.2)  
 

In other words, every concept is compared with all other concepts in semantic coverage S. Consequently, the representative 

point is identified as the concept having the maximum average similarity w.r.t. all other concepts in S. Figure 6 provides sample 
semantic coverages with their coverage representative points.  

As a result, instead of comparing the semantic coverages (i.e., the groups of concepts) of two social media objects (or events), 
we can efficiently compare their representative points13. 
 

4.1.4. Data Model 
 

After defining MRSM‟s dimensions, we define its data model for describing a social media object and an event. 
 

Definition 13: [Social Media Object (o)]. A social media object (e.g., video, image, chart, tweet, or Wiki article) is defined, 
following MRSM, as a quadruplet: 
 

o = (oid, tc , ℓc , sc ) (9) 
 

having a unique object identifier, oid, and three representative points: temporal tc, spatial c, and semantic sc, following MRSM  

 

We can refer to the above as a restricted representation of a social media object in MRSM. Yet, MRSM can also allow an 

extended representation of a social media object using the object‟s temporal, spatial, and semantic coverages, T, L, and S:   
 

oExtended = (oid, T, L, S) (10) 
 

 

                                                             
12 Varying semantic units as groups of concepts to modify the s emantic dimension’s granularity will be considered in a future study. 
13 This naturally comes  to the expense o f reduced semantic expressiveness and thus reduced accuracy in the co mparison process, a s a consequence of reducing of the whole 

semantic coverage to one single representative point. The same happens when reducing the temporal and spatial coverages into individual represe ntative points. 

 



 

 

 
 

 

 

 

 

 

 
 

a. oid 14646512184 

 Extended Restricted (default) 
 

T Ts=1404712589 
Te=1404712589 

tc 1404712589 

 
L NULL ℓ NULL 

 
S { torrent, rainfall, 

cloudburst, rainstorm 
July, Meskel Square, 

torrent, rain, lane, Bole 
International Airport, 

stream, water} 

sc rainfall 

 
 

 

b.  oid 544007664 

  Extended  Restricted (default) 
 T ts=1404744484 

te=1404744561 
tc 1404744523 

 L lat=9.005278  
long=38.763334 
alt=NULL 

ℓc lat=9.005278 
long=38.763334 
alt=NULL 

 S {thundershower, rainfall, 

rain, downpour, flood, 
rainstorm, rain,  hour, 

pockets, small businesses, 

problem, street boys} 

sc rainstorm 

 

 

c.  oid 14646512184 

  E
tended  Restricted (default) 

 T ts=1404711029 
te=1404711029 

tc 1404711029 

 L lat=9.005401 
long=38.763611 
alt=NULL 

ℓc lat=9.005401 
long=38.763611 
alt=NULL 

 S { Ethiopia , Addis Ababa, 

flood, inundation, traffic, 
chaos, terrible, evening, 

Olompia, today, 

rainstorm, flood, road} 

sc flood 

 

   
 

d.  oid  452155896 

  Extended  Restricted (default) 

 T ts=te=1238964834 tc 1238964834 
 L lat=45.51  

long=-73.55 alt=NULL 

ℓc lat=45.51 

long=-73.55 
alt=NULL 

 S {Ian Mosley, Mark Kelly, Pete 

Trewavas, Steve Hogarth, 

Steve Rothery, concert, gig, 
live, weekend, music, 

progressive, marillion} 

sc concert 

 

 

e. oid 3443324510 

  Extended  Restricted (default) 

 T ts=te=128876657 tc 128876657 
 L lat=45.51 

long=-73.557 
alt=NULL 

ℓc latt=45.51 

long=- 73.557 
alt=NULL 

 S {Steve Ho
arth, 

concert, gig, live, 

marillion , weekend, 
montreal, music, 

progressive} 

sc    gig 

 

 

f. oid 3421558753 

  Extended  Restricted (default) 

 T ts=te=1238956813 tc 1238956813 

 L NULL ℓc NULL 

 S {marillion, concert, 

rock, weekend, 
montreal} 

sc concert 

 
 

 

   
 

g.  oid 18796702 

  Extended  Restricted (default) 

 T ts=te=1145040959 tc 1145040959 

 L lat=47.4357 long=-
122.294 
alt=NULL 

ℓc lat=47.4357 
long=-122.294 
alt=NULL 

 S {Stardance, Norwescon 
Seattle, Double Tree 

Hotel, conference, 

cost
me play, 

antasy} 

sc fantasy 

 

 

h.  oid 128800481  

  Extended  Restricted (default) 

 T ts=te=1145041372 tc 1145041372 

 L lat=47.4357  
long=-122.294 
alt=NULL 

ℓc lat=47.4357 
long=-122.294 
alt=NULL 

 S {Double Tree Hotel,   

Nikkor, Seattle, conference, 
costume play, fantasy, 

science fiction} 

sc fantasy 

 
 

 

 

i. oid  129778685 

 Extended  Restricted (default) 

 T  ts=te=1145105698 tc  1145105698 

 L lat=47.4357  
long=-122.294 
alt=NULL 

ℓc  lat=47.4357 
long=-122.294 
alt=NULL 

 S {Norwescon, Nikkor, 
Washington, conference, 

convention, costume 
play} 

sc convention 

 

 

Figure 6. Images from our motivation example (cf. Figure 1) as well as 6 sample images from the MediaEvalSED 2013 image dataset [77] 

described followin g MRSM. Note that image descriptions were obtained using dedicated metadata extractor methods specifically 

tailored to extract social media object  descriptions from the concerned social media sites and MediaEvalSED into MRSM. We provide 

both the extended and restricted representations of objects, where the latter is utilized as the default representation in our approach. 



 

 

 

We adopt the restricted representation as the default representation of a social media object in our study in order to allow for 

efficient  processing: handling the whole coverages of a large number of objects is significantly more computationally comple x 
than handling their coverages‟ individual representative points (especially when dealing with the spatial and semantic dimensions, 
as highlighted in the previous sections). 

 

Consequently, an event can be defined as an aggregation or a group of similar social media objects : 
 

Definition 14: [Event (ε)]. An event ε is an occurrence of a social or natural phenomenon happening at a certain time and 

location, and can be identified/described by the set of social media objects O describing it, formally: 
 

ε = (eid, T, L, S)                                      (11) 
 

where eid is a key value used to uniquely identify an individual event ε, 
or all 

T T ( )
i

i

f o O

 , 
or all 

L L ( )
i

i

f o O

 and 
or all 

S S ( )
i

i

f o O

  

designate respectively: the union of the set of social media objects‟ temporal coverage representations U(Ti), spatial coverage 

representations U(Li), and semantic coverage representations U(Si), for all objects oi  O belonging to event ε  
 

 

    

  
 

 
 

eid    1 

Extended (default) Restricted 

T {1404711029,  
1404712589,  
1404744523} 

tc  1
04727776 

L {lat=9.005278    
long=38.763334 
alt=NULL 
 

lat=9.005401   
long=38.763611 
alt=NULL} 

c lat=9.0053401 
long=38.763471 
alt=NULL 
 
 

S {torrent, rainfall, cloudburst, 
rainstorm, July, Meskel Square, 

torrent, rain, lane, Bole 
International Airport, stream, 
water, thunder-shower, rainfall, 

rain, downpour, flood, 
rainstorm, rain, hour, pockets, 
small businesses, problem, 

street boys, Ethiopia, Addis 
Ababa, flood, i nundation, traffic, 
chaos, terrible, evening, 

Olompia, today, rainstorm, 
flood, road} 

sc rainstorm 

 

eid    2 

Extended (default) Restricted 

T {1238876657,  
1238956813, 
1238964834}  

tc 1238932768 

L {lat=45.5156    
long=-73.5578 
alt=NULL 
 

lat=45.517 
long=-73.5571 
alt=NULL} 

c lat=45.5163 
long=-73.55745 
alt=NULL 
 
 

S {Ian Mosley, Mark Kelly, 
Pete Trewavas, Steve 

Hogarth, Steve Rothery, 
concert, gig, live, 
marillion, weekend, 

music, progressive, 
montreal, Steve 
Hogarth} 

sc concert 

 

eid  3 

Extended (default) Restricted 

T {1145040959,  
1145041372,  
145105698} 

tc 1145062676 
 

L {lat=47.4357  
 long=-122.294 
alt=NULL 
 
lat=47.4357 
long=-122.294 
alt=NULL 
 

lat=47.4357 
long=-122.294 
alt=NULL} 

c lat=47.4357   
long=-122.294 
alt=NULL 

S {Stardance,  
Norwescon Seattle, 
DoubleTreeHot
l, 

Nikkor, Washington, 
conference,  cosplay,  
costume, fantasy, scifi,  

convention} 

sc fantasy 

   
 

 

Figure 7.  Events generated based on the sample images from Figure 6, described follo wing MRSM. We provide both the extended and 

restricted representations of events, where the former is utilized as the default representation in our approach. 
 

We can refer to the above as an extended representation of an event in MRSM. Yet, MRSM can also allow a restricted 
representation of an event by identifying the event‟s temporal, spatial, and semantic coverage representative points (similarly to 
object representative points): 
 

ε Restricted = (oid, tc , ℓc , sc) (12) 

 
Nonetheless, we adopt the extended representation as the default representation of an event in our study for more 

expressiveness, and especially since event descriptions are produced after the social media objects have been processed, and thus 
do not impact the time complexity of our solution.  

Consider for instance the 9 sample images shown in Figure 6 described following MRSM. The events extracted based on 

these images are provided in Figure 7. Note that social media objects‟ textual descriptions generally consist of concatenations of 
keywords or of short sentences (as shown in Figure 1). Hence, several linguistic pre-processing steps are required to identify 
semantically meaningful words, including  stop word removal (removing prepositions and semantically meaningless words such 

as: the, a, of, to, etc.), tokenization (parsing names into tokens based on punctuation and case, to form simple expressions, e.g., 



 

 

Amb_Temp  Ambient Temperature), and stemming (reducing inflected or derived words to their stem, i.e., base or root, e.g., 
raining, rains  rain) [13, 61]. The root words are then matched with the MRSM semantic dimension‟s concepts (we use a 
semantic network representation of WordNet 3.0 [63] as the semantic dimension in our study) to identify the corresponding 

semantic concepts. Concept identification is straightforward when the word has one single meaning, and consists of identifying 
the concept (synset) that subsumes the word in its definition. In the case of polysemous words (i.e., words with multiple senses), 
word sense disambiguation is utilized to select the semantic concept that most likely describes the meaning of the word among its 

surrounding keywords or within its containing sentence, e.g. [66, 90]. Linguistic pre-processing operations are executed offline to 
obtain the social media objects‟ semantic descriptions following MRSM, and do not affect system performance (cf. Section 4.5). 

 
 

4.2. Similarity Measures and their Metric Properties in MRSM 

A key issue when defining a space model (such as MRSM) is to define distance (similarity) measures allowing to compare and 

order entities (i.e., objects or events) represented in the space, and to study their properties which will govern the space model. 
 

4.2.1. Similarity Measures used in MRSM 

Following our MSRM definition, typical Euclidian distance can be utilized to compare the time coverage representative points of 
two social media objects or events: 

1 2T 1 2 T 1 2 c c

T 1 2Dist
Sim (o , o )  =         where     Dist (o , o ) = |t - t |  

(o , o ) 

1
[0,1]

1



 (13) 

 

The Haversine formula, commonly employed in geographic navigation to determine the great-circle distance between two points 

on a sphere [24], can be utilized to evaluate the geographic distance between two objects o1 and o2 in MRSM, based on their 
spatial stamps‟ longitude and latitude coordinates 14: 

 

 
 

L
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1 2
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L 1 2 1 2
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
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   

 

 

(14) 

where r is the average radius of the Earth (i.e. 6,371 Km), ∅1 and ∅2 are the latitude values of the spatial coverage representative 

points of objects o1 and o2 (in radians), and λ1 and λ2 are their longitude values (in radians). 
As for the semantic dimension, semantic distance can be computed as the inverse of any typical semantic similarity measure 

comparing two concepts in a semantic network [18]. Here, semantic similarity measures can be classified as edge-based 
(estimating similarity as the shortest path between concepts) [101], node-based (estimating similarity as the maximum amount of 
information content concepts share in common) [51], and gloss-based (estimating similarity based on word overlap between the 

concept‟s gloss descriptions) [9]. In our study, we adopt an aggregate semantic similarity measure introduced in [21, 92] 

producing similarity scores [0, 1], 0 designating minimal (null) similarity and 1 designating maximum (total) similarity: 
 

SimS(o1, o2) =  wEdgeSimEdge( 1cs , 
2cs , KB) +  wNode  SimNode( 1cs ,

2cs , KB)) +  wGloss  SimGloss( 1cs ,
2cs , KB))  [0, 1]      (15) 

 

 

where: 
1cs  and 

2cs  designate the two concepts representing the semantic coverage representative points of o1 and o2 respectively, 

KB is the reference lexical knowledge base (we adopt WordNet 3.015), wEdge+ wNode + wGloss = 1 and (wEdge, wNode, wGloss) ≥ 0, 
SimEdge is a typical edge-based measure from [101], SimNode is a typical node-based measure from [51], and SimGloss is a typical 

gloss-based measure from [9], expanded and normalized in [21, 92]. 
Consequently, the similarity between two objects represented in MSRM can be computed as the aggregation of individual 

dimensional similarity measures, using any convenient aggregation function such as maximum, minimum, average, or weighted 

sum. We adopt the latter in our study to allow more user flexibility in fine-tuning the weights: 
          

SimMRSM(o1, o2) =   wT SimT(o1, o2) + wLSimL(o1, o2) +  wS SimS(o1, o2)      [0, 1] 
 

(16) 

where o1 and o2 are two social media objects in MRSM, (SimT, SimL, SimS)  [0, 1] designate temporal, spatial, and semantic 
similarity measures respectively, wT, wL, wS designate the similarity measures‟ coefficients (weight values) respectively where wT 

+ wL + wS = 1 and (wT, wL, wS)  016. Similarity weight values can be set by the user or obtained empirically.   
 

                                                             
14 To our knowledge, there is no geographic or spatial distance measure that considers the altitude value in its computations. Yet, we include altitude as part of the spatial 

stamps’  description in order to utilize it later on when an appropriate distance/similarity measure beco mes available.  
15 Available at: https://wordnet.princeton.edu/wordnet/download/standoff/  
16 The same formula can be applied when computing SimMRSM(1 , 2)  where 1 and 2 are  two events represented in their restricted form in MRSM.  



 

 

4.2.2. Metric Properties of MRSM 

Based on the above formula and description, our combined MRSM similarity measure is consistent with the formal definition of 

similarity [28, 93], and comes down to a generalized metric, i.e., a similarity (distance) function satisfying minimality, reflexivity 
and symmetricity properties, but not triangular inequality:  

 

i. Minimality: SimMRSM(o1, o2) = 0  o1 and o1 have no common characteristics, 
ii. Self-similarity or Reflexivity: SimMRSM (o1, o1) = 1, 

iii. Symmetricity: SimMRSM (o1, o2) = SimMRSM (o2 , o1) 

iv. Triangular inequality: SimMRSM (o1, o2) ≥ SimMRSM (o1, o3) × SimMRSM (o3, o2) (i.e., DistMRSM (o1, o2 )  DistMRSM (o1, o3) + 
DistMRSM (o3, o2) where DistMRSM  is the inverse distance function of SimMRSM) 

 

Triangular inequality is usually domain and application-oriented [51, 93]. While our temporal and spatial similarity measures 
do satisfy triangular inequality (following Euclidian and Haversine distances), yet most semantic similarity measures, e.g., [9, 51, 
101], fail to satisfy the latter property. An example by Tversky [97] illustrates the impropriety of triangular inequality with an 

example about the similarity between countries: ―Jamaica is similar to Cuba (geographical proximity); Cuba is similar to Russia 
(political affinity); but Jamaica and Russia are not similar at all‖. That is because semantic similarity is usually evaluated 

through multiple semantic relations between concepts, e.g., geographic proximity on one hand, and political affinity on the other. 
A solution would be to consider one kind of semantic relations (e.g., political affinity only) when evaluating semantic similarity. 
SimS would be computed as the aggregation of multiple similarities evaluated each w.r.t. the corresponding semantic relation 

(SimS_GeoProx, SimS_PoliticalAff, etc.), where each measure would (individually, and when aggregated) verify triangular equality. 
 

4.3. Event Detection and Description 

Given a set of social media objects represented in MRSM, we group them into clusters, based on their time, space, and semantic 

similarities, where each cluster of objects identifies an event (cf. Definition 14). Here, we introduce an adapted graph-based 
agglomerative average-link clustering method (refer to [1] for a survey on clustering algorithms) as an unsupervised approach to 

perform event detection since we do not assume any knowledge about the events prior to the event detection process17.  
 

 Algorithm: Event_Detection 

Input:  

1.  Objects: Collection     // collection of social media objects represented in MRSM 

 Variables:  

2.  SimMat[ , ]:Decimal     // similarities of pairs of MM objects 

3.  dec-value: Decimal     // clustering  level decrement value (= -0.1 by default) 

4.  Clusters:  Collection    // clusters of objects 

5.  l i: Decimal    // Clustering  level  

6.  cl: Decimal   // stopping clustering level 

7.  lo:  Decimal         // initial parameter to have m partitioned clusters (= 0.9 by default) 

 Output: 

8.  Events: Collection    // contains the events detected 

 Begin 

9.  For every oi in Objects 

10.  For every o j in Objects 

11.  SimMat[i, j] = SimMRSM(oi, oj)       // Computing pair-wise similarities 
12.  For li= lo Down to 0 Step dec-value 

13.  If li = lo Then 

14.      Clusters = Generate_Initial_Clusters(SimMat) 
15.  Else 

16.  For each pair of clusters (clusti, clust j) in Clusters  

                     // Clusters contain the groups of objects at level l i-1 
17.     If Avg_Sim(clusti, clustj) ≥ l i Then  // using UPGMA in Formula 11 

18.        merge clusti and clustj in the same cluster  

19.  End If 

20.  Next 

21.  End if 

22.  Next 

23.  cl =C-Index(Clusters)           // stopping rule for clustering 

24.  Events = MRSM(Clusters at cl) // clusters obtained when stopping rule is reached 

25.  Return Events              // collection of events described in MRSM 

 End 
 

Figure 8. Pseudo code of our event detection algorithm. 

 

The algorithm‟s pseudo-code is shown in Figure 8. Given n input objects, the algorithm starts by computing the similarity 
between every pair of objects using our aggregate similarity measure (SimMRSM, cf. Eq. 16). Aggregate similarity scores computed 

for all n (n-1)/2 pairs of objects are stored in an (n   n) matrix (i.e. SimMat[,], cf. lines 9-11). Clusters are then generated by 

                                                             
17 Note that any general purpose clustering algorithm could have been used here. Yet, we adapt a graph-based agglomerative group average-link approach due to its well 

know effectiveness and acceptable efficiency (average O(N2) time) in various application scenarios [1, 5, 94]. 



 

 

varying the clustering level between lo and 0, at a constant decrement pace of dec-value (line 12). The group link clusters for a 
clustering level li are identified by grouping together objects with similarity scores ≥ li. Clustering at level lo groups similar objects 
into an initial set of clusters by calling function Generate_Initial_Clusters (lines 13-14). Clustering at level li involves two steps 

(lines 15-21): i) computing the similarity between the two clusters using UPGMA (Unweighted Pair-Group Averaging Method) 
[84], as shown in Eq. 17, and ii) merging the clusters if their average pair-wise similarity is greater than or equal to li: 

 

 
  i 1 j 2

MRSM i j

o clust clust
1 2

1 2

Sim (o , o )

Avg_Sim clust ,  clust  
| clust |   |clust |

o 


 

 
    (17) 

 

where oi and oj are objects in clusters clust1 and clust2 respectively, and |clust1| and |clust2| are cluster cardinalities (in number of 
objects per cluster). A stopping rule is necessary to determine the most appropriate clustering level for the link hierarchies. 
Milligan & Cooper in [64] present 30 such rules, among them, C-index exhibits good performance and is thus adopted in our 

study (line 23). The clusters identified at the stopping level are then described as events following MRSM (line 24), by producing 
corresponding temporal, spatial, and semantic coverages obtained from their object descriptions (cf. Definition 14). For instance, 
given the objects in Figure 6, Figure 7 shows the events produced by our algorithm (considering equal weights for every MRSM 

dimension, and default parameter values for the event detection algorithm), along with their MRSM descriptions . 
 

4.4. Identifying Event Relationships 

Identifying the relationships between two (objects or) events can be performed by comparing their descriptions, i.e., their 
temporal, spatial, and semantic coverages and representative points in MRSM. We distinguish between three categories of 

relationships: i) directional (e.g., before, after), ii) metric (e.g., far, near), and iii) topological (e.g., include, intersect). The 
following subsections describe each category of event relationships and how to identify them w.r.t. every dimension in MRSM.  
 

4.4.1. Directional Relationships 

Directional relationships are identified for MRSM‟s temporal and spatial dimensions, and do not apply to the semantic dimension. 
 

Definition 15: [Temporal Directional relationship ( directional
Tr (1, 2)]. It refers to the exclusive directional relationship that can 

exist between two events 1 and 2 following their temporal coverages in MRSM, specifically: before (
before

 ) and after (
before

 ). 

Formally, considering events 1 and 2: 

1 2 e 1 s 2
directional

1 2T

1 2 s 1 e 2

 ε  ε           if  t (ε )  t (ε )
r (ε ,ε ) = 

 ε  ε            if  t (ε )  t (ε )

before

after


 


  

 
( 18) 

 

where T(i) ={ts(i), te(i)} represents the temporal coverage of i, consisting of its start time and end time respectively  
 

In other words, an event 1 occurs before event 2 if 1 ends before 1 begins. Similarly, 1 occurs after 1 if 1 starts after 2 ends. 
 

Definition 16: [Spatial Directional relationship ( directional
Lr (1, 2)]. It refers to the directional relationship that can exist between 

two events 1 and 2 following their spatial coverages in MRSM, specifically: north (
north

 ), south (
south

 ), east (
east

 ), west (
west

 ), above 

(
above

 ), and below (
below

 ). Formally, considering events 1 and 2:  
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(19) 

 

where ℓc(i) =< Øi, λi, hi > represents the spatial coverage representative point (center of gravity) of i, consisting of its latitude, 

longitude, and altitude coordinates respectively18  

                                                             
18 Note that identifies whether a pair o f latitude/longitude coordinates are al most (approximately) equal, co mpared  with exact equality (=). Approximate equality is 

evaluated using dedicated (user/system defined) latitude/longitude similarity thresholds, where 1 2 comes  down to verifying whether |1 - 2| <  Thresh (likewise, 

1 2 co mes down to verifying whether |1 - 2|  < Thresh).  We adopt approximate equality here to allow more flexibility in identifying spatial  directional relationships.  



 

 

Note that while temporal directional relationships are exclusive (i.e., no two events can share both before and after 

relationships simultaneously), yet spatial directional relationships are inclusive and can occur simultaneously (e.g., 1

north

 2, 1  
west



2, and 1 
below

 2 mean event 1 occurs to the north west of 2 and is below 2 in altitude). 

 
4.4.2. Metric Relationships 

We consider two main metric relationships: near and far, that can be applied to all three dimensions of MRSM. We make use of 
MRSM‟s dimension-specific similarity measures (cf. Section 4.2) to define them. 
 

Definition 17: [Temporal Metric relationship ( metric
Tr (1, 2)]. It refers to the exclusive metric relationship that can exist between 

two events 1 and 2 following their temporal coverages in MRSM: near (
Tnear

 ) and far (
T far

 ). Considering events 1 and 2: 
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 (20) 

 

where SimT(tc(1), tc(2)) computes the temporal similarity (following Eq. 13) between the temporal coverage representative 

points of 1 and 2, and ThreshT is a (user defined or system computed) temporal closeness threshold  
 

In other words, an event 1 is considered to be temporally near another event 2 if 1‟s temporal midpoint is close to that of 2. 

Otherwise, the events are considered to be temporally far from each other. 
 

Definition 18: [Spatial Metric relationship ( metric
Lr (1, 2)]. It refers to the exclusive metric relationship that can exist between two 

events 1 and 2 following their spatial coverages in MRSM: near (
L near

 ) and far (
L far

 ). Considering events 1 and 2: 
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 (21) 

 

where SimL(c(1), c(2)) computes the spatial similarity (following Eq. 14) between the spatial coverage representative points of 

1 and 2, and ThreshL is a (user defined or system computed) spatial closeness threshold  
 

In other words, an event 1 is considered to be spatially near another event 2 if 1‟s spatial midpoint (center of gravity) is 

close to that of 2. Otherwise, the events are considered to be spatially far from each other. 
 

Definition 19: [Semantic Metric relationship ( metric
Sr (1, 2)]. It refers to the exclusive metric relationship that can exist between 

two events 1 and 2 following their semantic coverages in MRSM: near (
Snear

 ) and far (
S far

 ). Considering events 1 and 2: 
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 (22) 

 

where SimS(sc(1), sc(2)) computes the semantic similarity (following Eq. 15) between the spatial coverage representative points 

of 1 and 2, and ThreshS is a (user defined or system computed) semantic closeness threshold  
 

An event 1 is considered to be semantically near another event 2 if 1‟s semantic midpoint (concept most similar to all others 

in 1‟s semantic coverage) is close to that of 2. Otherwise, the events are considered to be semantically far from each other. 
 
4.4.3. Topological Relationships 

We consider four topological relationships: equal, include, intersect, and disjoint, applied to all three dimensions of MRSM.  
 

Definition 20: [Temporal Topological relationship (
topological
Tr (1, 2)]. It refers to the exclusive topological relationship that can 

exist between two events following their temporal coverages in MRSM: equal (
Tequal

 ), include (
Tinclude

 ), intersect (
Tintersect

 ), and 

disjoint (
Tdisjoint

 ). Considering two events 1 and 2:  
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(23) 

 

where T(i) ={ts(i), te(i)} represents the temporal coverage of i, consisting of its start time and end time respectively  
 

Definition 21: [Spatial Topological relationship (
topological
Lr  (1, 2)]. It refers to the exclusive topological relationship that can exist 

between two events following their spatial coverages in MRSM: equal (
Lequal

 ), include (
L include

 ), intersect (
L intersect

 ), and                        

disjoint (
L disjoint

 ). Considering two events 1 and 2: 
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where equalL(), includeL(), and intersectL() are functions specific to the nature of the spatial coverage considered (e.g., minimum 
boundary, actual surface, or path/trail coverage, cf. Figure 5)  
 

For instance, considering the minimum boundary or the actual surface spatial coverages, equalL(), includeL(), and intersectL() 

functions come down to evaluating geometric equality, inclusion, and intersection between two surface areas in a Euclidian 
geometric space. However, considering the path/trail spatial coverage: 

 

- Function equalL(1, 2) is evaluated by checking whether all spatial stamps in both events‟ spatial coverages are pair-wise 

identical, i.e., i 1 j 2 i j i jL(ε ),  L(ε ),   one-to-one mapping between every  and /  ,      

- Function includeL(1, 2) is evaluated by testing whether the path consisting of 1„s spatial coverage is a sub-path of 2„s 

coverage, i.e., L(1) = i, k,…m      L(2) =

 

j, …, i, k,…m, …, n 

- Function intersectL(1, 2) is evaluated by testing whether 1 and 2‟s path coverages cross, i.e.,

 



 

path (i, j)  L(1)   

  path (m, n)  L(2)  /  (i, j)  and (m, n) cross19.  

 

While temporal and spatial topological relationships can be accurately identified given the events‟ temporal and spatial 
coverages, the same cannot be done with semantic topological relationships. The latter are fuzzy by nature due to the linguistic 

and non-Euclidian nature of semantic coverages, made of sets of concepts referencing a lexical knowledge base. To solve this 
issue, we adopt the semantic relatedness approach from [88, 89] originally developed to identify the semantic topological 

relationships between two RSS feeds. The same approach can be utilized to the semantic coverages of two events in MRSM.  
 

Definition 22: [Semantic Topological relationship (
topological
Sr  (1, 2)]. It refers to the exclusive topological relationship that can 

exist between two events following their semantic coverages in MRSM: equal (
Sequal

 ), include (
Sinclude

 ), intersect (
Sintersect

 ), and 

disjoint (
Sdisjoint

 ). Formally, considering two events 1 and 2: 
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where equalS(), includeS(), and intersectS() are defined following the semantic relatedness approach in [88, 89]  

                                                             
19 We adopt the path/trail spatial coverage and its equalL(), includeL(), and intersectL() functions since they are processed in linear time (cf. Section 4.1.2). 



 

 

Following [88, 89], the semantic relatedness between two semantic coverages S(1) and S(2), noted SemRel(S(1), S(2)), is 

evaluated as the cosine similarity of the semantic enclosure vectors of S(1) and S(2). The semantic enclosure of one concept c1 
within another concept c2 designates how much of c1‟s semantic neighborhood is included in c2‟s semantic neighborhood, where 

the semantic neighborhood of a concept ci is a set of concepts surrounding ci in the reference lexical knowledge base (e.g., 

WordNet). Consequently, semantic coverage vectors describing S(1) and S(2) are produced, where the vector space dimensions 

represent each a distinct concept cm  S(1)  S(2), such that the weight of a concept cm in S(i) is computed as the maximum 

semantic enclosure of cm within any of the other concepts cj S(i). In other words, SemRel(S(1), S(2)) returns a value [0, 1] 

estimating how much of the semantic neighborhoods of S(1) and S(2)‟s concepts – i.e., how much of S(1) and S(2)‟s semantic 
meanings – are close to each other. As a result:  

- Function equalS(1, 2) is evaluated by checking whether the semantic relatedness between S(1) and S(2) is higher than a 

(user-defined or system computed) equality threshold, i.e., SemRel(S(1), S(2)) > ThreshEqual, 
- Function includeS(1, 2) is evaluated as the product of the semantic enclosure vectors of S(1) and S(2), designating 

whether S(1)‟s meaning is semantically included in S(2) or not, 
- Function intersectS(1, 2) is evaluated by checking whether semantic relatedness between S(1) and S(2) is comprised 

between two (user/system defined) thresholds for equality and disjointness: ThreshDisjoint  SemRel(S(1), S(2))  ThreshEqual. 
 

 

 

Figure 9. Basic semantic topological relationships and corresponding thresholds following [88, 89]. 

 

While semantic equality, intersection, and disjointness relationships are defined as fuzzy (approximate) relationships w.r.t. 

(pre-defined or pre-computed) semantic relatedness thresholds  (cf. Figure 9), nonetheless, this is not the case for the inclusion 
relationship which can be accurately identified by evaluating the product of semantic coverages‟ enclosure vectors (a more 
detailed description of the semantic relatnedness approach from [88, 89] is provided in the Appendix).  

 

4.4.4. Relationships Identification Algorithm 

Our event relationships identification algorithm is shown in Figure 10. It identifies the relationships between a pair of input events 

following the above definitions, and is iteratively applied on all pairs of events extracted by our event detection algorithm.  
 

 
 

Algorithm: Relationships_Identification  

 
1. 
2. 

Input:   

Events: Collection                         // collection of events represented in MRSM 

ThreshT, ThreshL, ThreshS, ThreshDisjoint, ThreshEqual                     // threshold values  [0, 1] 

 
3. 

 
4. 

Variables:  

i, j: events 
Output:  

Rel{} =           // set of relationships between all pairs of events                        

 Begin 

5. 
 

6. 
 

7. 
 

8. 
 
 

9. 
 

10. 
 

11. 
 
 

12. 
 

13. 
 

14. 
15. 

For every pair (i, j) in Events 

Rel = Rel  T_Directional (i, j)       // directional
Tr (i, j) following Definition 15 

Rel = Rel  T_Metric (i, j, ThreshT)    // metric
Tr (i, j) following Definition 17 

Rel = Rel  T_Topological (i, j)              // 
topological
Tr (i, j) following Definition 20 

  

Rel = Rel   L_Directional (i, j)      // directional
Lr (i, j) following Definition 16 

Rel = Rel   L_Metric (i, j, ThreshL)         // metric
Lr (i, j, ThreshL) following Definition 18 

Rel = Rel   L_Topological (i, j)               // 
topological
Lr (i, j) following Definition 21 

 

Rel = Rel   S_Metric metric
Sr (i, j, ThreshS)                 // 

metric
Sr (i, j)  following Definition 19 

Rel = Rel   S_Topological (i, j, , ThreshDisjoint, ThreshEqual)     // 
topological

Sr (i, j),  Definition 22 

Next  

Return Rel 

End 
 

Figure 10. Pseudo code of our event relationships identification algorithm. 

 

For instance, considering sample events 1, 2, and 3 in Figure 7, the algorithm identifies the following relationships: 
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Figure 11. Simplified event-based knowledge graph, describing the events from Figure 7. 

 

Figure 11 shows a simplified representation of the above events following MRSM, along with their temporal, spatial, and 

semantic relationships. Our approach starts with raw social media objects with their metadata, and then generates semantic-aware 
events with their relationships, producing an event-based knowledge graph which forms the seed for event-based CK. We mainly 
focus on the temporal (Where), location (When), and semantic (What) dimensions in this paper. Yet, producing full-fledged CK 

requires expanding our current event-based knowledge graph to include user related information (i.e., Who, Why, and How 

dimensions). Also, dedicated inference rules can be developed (e.g., having 1

after

 2 and 2

after

 3 means we can transitively infer 1

after

 3) to enhance the knowledge graph organization and expressiveness, which we aim to investigate in a future study. 
 

4.5. Computational Complexity 

The time complexity of our social event detection, description, and linkage solution simplifies to O(|N|
2
 |KB| depth(KB)) where 

|N| designates the number of social media objects, |KB| the number of concepts in the reference knowledge base, and depth(KB) 
its maximum depth. It is evaluated as the sum of the complexities of the four main modules of the SEDDaL framework: 
 

i. Social media object representation within MRSM: simplifies to O(|N| |S|
2
 |KB| depth(KB)) time, evaluated as the sum of 

the time complexities of: i) identifying the temporal coverage representative points of all objects in the data collection 
(computed as the average of the start and end temporal stamps of an object, cf. Eq. 3) which requires O(|N|) time, ii) 

identifying the spatial coverage representative points of all objects (computed as the geographic midpoints of the objects‟ 

spatial stamps, cf. Eq. 7) which requires O(|N| |L|) time where |L| is the number of spatial stamps for a given object (cf. 
Definition 8), and iii) identifying the semantic coverage representative points for all objects (computed as the concept that 

is most similar to all others within a given object‟s semantic coverage, cf. Eq. 8) which requires 

O(|N| |S|
2
 |KB| depth(KB)) 20 time where |S| is the number of semantic stamps/concepts for a given object.  

                                                             
20  O(|KB|    depth(KB)) underlines the complexity of the combined semantic similarity measure [92] adopted in our study, utilized to identify the concept that is 

most similar to all others in a multimedia object‟s semantic coverage. depth(KB) represents the maximum number of edges (semantic relationships) between 

KB‟s root node and its farthest leaf node.  
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ii. Social media objects’ similarity evaluation: simplifies to O(|KB| depth(KB)) time, and is computed as the sum of the 
complexities of temporal, spatial, and semantic similarity evaluation measures: i) temporal similarity evaluation (based 
the Euclidian distance between two temporal coverages‟ representative points, cf. Eq. 13, requires constant O(1) time, ii) 

spatial similarity evaluation (based on the Haversine‟s distance between two spatial coverages‟ representative points, cf. 
Eq. 14)  requires O(1) time, and iii) semantic similarity evaluation (combining edge-based, node-based, and gloss-based 

similarity between two semantic coverages‟ representative points/concepts, cf.  Eq. 15) requires O(|KB| depth(KB)) time.  

iii. Event detection process (cf. Figure 8): simplifies to O(|N|
2
 |KB| depth(KB)) time, and comes down to the clustering 

algorithm‟s complexity: O(|N|
2
), combined with the complexity of the similarity evaluation process: O(|KB| depth(KB)). 

iv. Event relationships identification (cf. Figure 10): simplifies to O(|E|
2
 |S|

2
 |KB|) time, where |E| is the number of extracted 

events, and |S| the number of semantic concepts (cardinality of the semantic coverage) for a given event, and is computed 
as the sum of the complexities of: i) identifying the metric, directional, and topological relationships between two events, 
following both temporal and spatial dimensions, requires constant O(1) time, ii) identifying the semantic metric 

relationships requires O((|KB| depth(KB)) (to compute semantic similarity between two event‟s semantic representative 

points), and iii) identifying semantic topological relationships requires O(|S|
2
 depth(KB)) time (to evaluate the semantic 

relatedness between two event‟s semantic enclosures and compute their enclosure vectors‟ products , cf. Appendix). 

5. Experimental Evaluation 

We have implemented SEDDaL to test and evaluate its performance, and compare it with alternative solutions in the literature. 
Written in Java, our implementation comprises of SEDDaL‟s four main modules: i) social media object representation, ii) 

similarity evaluation, iii) event detection and description, and iv) event relationships identification, and four metadata extractor 
methods, designed to extract social media objects‟ temporal, spatial, and textual descriptions obtained from YouTube, Flickr, 
Twitter, and the MediaEvalSED 2013 and 2014 image datasets [33, 77]. It also includes a linguistic pre-processing component 

(performing stop word removal21, tokenization22, stemming23, and word sense disambiguation24) allowing to transform the objects‟ 
textual descriptions into semantic coverages made of sets of semantic concepts. WordNet 3.0 is utilized as the reference 

knowledge base in SEDDaL‟s current implementation25, where concepts represent sets of synonymous terms (or synsets).  

5.1. Experimental Dataset and Pre-processing 

We utilized the MediaEvalSED 2013 and 2014 image datasets [33, 77] to evaluate our event extraction approach. The 2013 
dataset contains a collection of 131,211 photos and their associated metadata in XML (eXtensible Markup Language) format, and 

the larger 2014 dataset contains 362,578 photos with their metadata provided in JSON (Java Script Object Notation) format. Both 
datasets contain the ground truth event annotations created by human users. The ground truth consists of associating each image 
with a single label designating an event, such that no image can belong to more than one event. Image metadata contain image_id, 

photo_url, username, dateTaken, dateUploaded, title, description, tags, and location (defined in terms of latitude and longitude) 
among others, associated with every image. Based on MRSM, we only extract and process image metadata associated with 
temporal features (i.e., dateTaken and dateUploaded), spatial features (i.e., latitude and longitude), and semantic features (i.e., 

title, tags, and description). Note that almost all of the photos have temporal information, but only 46.1% of them have spatial 
information, 95.6% of them have tags, 97.9% have titles, and 37.9% have description information. The datasets were pre-

processed using our MediaEvalSED metadata extractor to: i) convert temporal values into UNIX epoch26, i) clean out the HTML 
tags (e.g., <br>, <i>, etc.) and remove the special characters embedded in the image‟s textual descriptions (e.g., &quot; &amp; 
&lt; etc.), ii) translate non-English textual metadata using the Google API Translate service, and iii) replace hyphens by spaces or 

blank characters according to the existence of the word in WordNet. The images‟ textual descriptions, originally expressed in  
three elements in the source datasets (i.e., title, descriptions, and tags), were merged into one element (labeled content), and then 
processed through our linguistic-preprocessing component to produce the corresponding semantic coverages. 

5.2. Evaluation Metrics 

To evaluate the quality of our event detection process, we use the Normalized Mutual Information (NMI) [105] and f-score 
measures [34] commonly utilized in the literature. NMI is an informed probabilistic measure that evaluates the clustering 
accuracy (purity) of extracted events, by comparing the generated clusters (events) with the user defined ones (ground truth): 

                                                             
21  Using WordNet‟s stop word list: http://www.d.umn.edu/~tpederse/Group01/WordNet/wordnet -stoplist.html 
22  Using the Stanford Tokenizer: nlp.stanford.edu/software/tokenizer.shtml  
23  Using the Porter stemmer: http://tartarus.org/martin/PorterStemmer/  
24  Using an implementation of the simplified LESK disambiguation algorithm: http://sigappfr.acm.org/Projects/XSDF/ 
25  The  more co mprehensive Yago knowledge based [41] can be used in the future. 
26 The temporal features in the MediaEvalSED 2013  and 2014 datasets, i.e., dateTaken and dateUploaded, are represented following the Internet date/time format, RFC 

3339 (i.e., YYYY-MM-DD  hh:mm:ss.f).  But, the RFC 3339 date/time  representation lacks time zone in formation. For  example, the timestamp  "2007 -10-25 20:32:23.0" 
in Addis Ababa, Ethiopia (which is GMT+3) and Washington, DC, USA (which is GMT-5) should represent different instants of time  (given their time zone di fferences) . 

To address this issue, we transform the Internet date/time format into the UNIX timestamp (c f. Section 4.1). The value o f dateTaken is utilized as the object‟s time stamp.  
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where: Ω={w1, w2,…, wk} is the set of generated clusters, C={c1, c2, …, cj} is the set of predefined clusters (ground truth), I(Ω, C) 
is the mutual information between the generated clusters and the predefined clusters, and H(Ω) and H(C) are the entropies of the 

sets of generated clusters and predefined clusters respectively:  
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where p(ci) underlines the probability of an object being in the predefined cluster c i, and is computed as the number of objects in  

ci that truly belong to ci over the total number of objects in ci (similarly for p(wj)), and p(ci, wj) underlines the probability of an 

object being in both ci and wj, and is computed as the cardinality (number of objects in) the intersection of ci and wj, i.e., |ci  wj| 

over the cardinality of the union of ci and wj , i.e., | ci  wj |. NMI‟s score varies  [0, 1], where a higher NMI value indicates a 

better agreement with the ground truth results (NMI=1 indicates total agreement between generated clusters and predefined ones), 
whereas a lower NMI value (closer to 0) indicates lesser agreement with the ground truth [105]27.  

On the other hand, f-score measures the goodness of extracted events (clusters of objects), computed as the harmonic mean of 

precision (PR) and recall (R) measures widely utilized in information retrieval [8, 60]: 
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For an extracted cluster Ci that corresponds to a given user identified event i:  
 

 ai is the number of objects in Ci that indeed correspond to i (correctly clustered objects). 

 bi is the number of objects in Ci that do not correspond to i (miss-clustered).  

 ci is the number of objects not in Ci, although they correspond to i (objects that should have been clustered in Ci). 
 

High precision denotes that the clustering task achieved high accuracy, grouping together objects that actually correspond to 

the events mapped to the clusters. High recall means that very few objects are not in the appropriate cluster where they should 
have been (i.e., few objects are not associated to the proper event). Hence, high precision and recall, and thus high f-score 
(indicating in our case excellent clustering quality) characterize a good event detection method.  

We also utilize typical precision and recall measures to evaluate the quality of our event relationships identification process. 

5.3. Event Detection Quality 

We conducted two sets of experiments to evaluate the event detection quality of our approach: i) considering the impacts of 
MRSM‟s temporal, spatial, and semantic feature dimensions , and ii) comparing our method with existing solutions. 

5.3.1. Impact of Feature Dimensions 

We ran four experiments using different parameter values for weight parameters wT, wL, and wS highlighting the impact of 

temporal, spatial, and semantic feature dimensions.  
In Experiment #1, we set the value of wT to 0.0 and apply a stepwise increment of 0.1 until reaching its 1.0 upper bound. 

The values of wL and wS are set to be the same following wT‟s variation, i.e., wL = wS = (1-wT)/2. Experimental results in Table 

1.a and Figure 12.a show that both NMI and f-score values increase: from 0.9637-to-0.9845 and from 0.9863-to-0.9943 
respectively, when wT increases from 0.0-to-0.3. However, both evaluation metrics‟ values decrease when wT increases from 0.4-

to-1.0. The best NMI (i.e., 0.9943) and f-score (i.e., 0.9845) are obtained when wT = 0.3 with wL = wS = 0.35. This concurs with 

the intuition behind the theoretical design of MRSM: highlighting that all three dimensions of the model have a significant impac t 
on event detection. Note that when the value of wT=1.0, both the NMI (0.8992) and f-score (0.7427) evaluation metrics record 

their worst results, which shows that relying on the social media object‟s temporal description only (while totally disregarding its 
spatial and semantic dimensions) does not help in detecting events. 

                                                             
27 In cluster evaluation literature, NMI and f-score are commonly used metrics to evaluate cluster quality. Other metrics include purity (“ predecessor” to NMI) and Rand 

index (“ predecessor” to f-score) [60]. While the original purity measure counts the number o f objects correctly assigned to their proper cl usters, yet, its main downside is 
that it tends to increase with the increase in number of clusters, since the clusters become s maller and thus the number o f o bjects put in the wrong clusters tends to 

decrease accordingly, reaching purity = 1 (maxi mu m) when individual clusters are formed (where every object is put in its own “ correct” cluster). NMI was introduced to 

handle the tradeoff between i) number o f correctly clustered objects and ii) number o f generated clusters, using an informati on-theoretic approach: evaluating the  

probability of an object being in the proper cluster. And to handle (penalize) obtaining a larger number  o f generated cluster s (since probabilities would otherwise increase  

accordingly, which brings us back to the same problem o f purity ), NMI normalizes the probabilities by dividing them with the sum of the entropies of both the generated 
clusters and the reference (ground truth) clusters. 

 



 

 

Table 1. NMI and f-score values obtained when varying the temporal, spatial, and semantic feature weight values. 
 

a. Experiment 1: Impact of varying wT                                   b. Experiment 2: Impact of varying wL                                  c. Experiment 3: Impact of varying wS 
 

wT wL = wS  NMI F-Score  wT wL = wS  NMI F-Score  wT wL = wS  NMI F-Score 

0.0 0.50 0.9863 0.9637  0 0.50 0.9727 0.9285  0 0.50 0.9872 0.9626 

0.1 0.45 0.9911 0.9756  0.1 0.45 0.9915 0.9772  0.1 0.45 0.9932 0.9810 

0.2 0.40 0.9932 0.9825  0.2 0.40 0.9920 0.9785  0.2 0.40 0.9942 0.9843 

0.3 0.35 0.9943 0.9845  0.3 0.35 0.9942 0.9843  0.3 0.35 0.9941 0.9841 

0.4 0.30 0.9926 0.9792  0.4 0.30 0.9936 0.9830  0.4 0.30 0.9943 0.9845 

0.5 0.25 0.9832 0.9511  0.5 0.25 0.9935 0.9830  0.5 0.25 0.9882 0.9713 

0.6 0.20 0.9493 0.8568  0.6 0.20 0.9901 0.9725  0.6 0.20 0.9780 0.9499 

0.7 0.15 0.9464 0.8492  0.7 0.15 0.9896 0.9714  0.7 0.15 0.9576 0.9005 

0.8 0.10 0.9409 0.8326  0.8 0.10 0.9890 0.9693  0.8 0.10 0.9336 0.8540 

0.9 0.05 0.9337 0.8144  0.9 0.05 0.9885 0.9678  0.9 0.05 0.9227 0.9329 

1.0 0.0 0.8992 0.7427  1 0 0.9872 0.9631  1 0 0.9093 0.8095 

 

In Experiment #2, we vary the value of wL from 0.0 to 1.0, while applying a stepwise increment of 0.1. The values of wT and 

wS are set to be the same following wL‟s variation, i.e., wT = wS = (1-wL)/2. Similarly to the previous experiment‟s results, Table 
1.b and Figure 12.b show that both NMI and f-score values increase: from 0.9727-to-0.9942 and from 0.9285-to-0.9843 

respectively, when wL increases from 0.0-to-0.3. Both evaluation metrics decrease when wL increases from 0.4-to-1.0 (i.e., when 
wT and wS start to decrease from 0.3-to-0). The best NMI value (i.e., 0.9942) and f-score value (i.e., 0.9843) are obtained when wL 
= 0.3 with wT = wS = 0.35. Results of Experiment 2 also concur with intuition behind our MRSM design: that all three temporal, 

spatial, and semantic dimensions have an important impact on event detection. Note that both NMI (0.9727) and f-Score (0.9285)  
record their worst results when wL=0, i.e., when totally disregarding the spatial dimension. 

In Experiment #3, we vary the value of wS 0.0 to 1.0 with a stepwise increment of 0.1. The values of wT and wL are set to be 

the same following wS‟s variation, i.e., wT = wS = (1-wL)/2. Experimental results in Table 1.c and Figure 12.c show that both NMI 
and f-score values increase: from 0.9872-to-0.9943 and from 0.9626-to-0.9845 respectively, when wS increases from 0.0-to-0.4. 

Yet, both evaluation metrics decrease when wS increases from 0.5-to-1.0 (i.e., when wT and wL start to significantly decrease from 
0.25-to-0). The best NMI (i.e., 0.9943) and f-score (i.e., 0.9845) values are obtained when wS = 0.4 and wT = wL = 0.3. This 
concurs with our intuition and the results of the previous experiments, where all three dimensions have a major impact on event 

detection. When the value of wS=1.0, both NMI (0.9093) and f-score (0.8095)  record their worst results, which shows that using 
the objects‟ semantic description only (while disregarding its time and space descriptions) does not help in detecting events . 

Experiment #4 set out to empirically identify an estimation of the parametric configuration of wT, wL, and wS producing the 

best event detection quality. Here, we vary the weight values independently between [0.25, 0.45], where the latter designates the 
range of values for which each of the parameters produced its best results in the previous experiments. For each parameter, the 
weight values are incremented by 0.05 from the lower boundary (0.25) until reaching the upper boundary (0.45). This produces 64 

different parametric configurations, a subset of which (including the top 10 configurations) is shown in Table 2. Results show that 
the best NMI (0.9943) and f-score (0.9845) values are obtained with wT=0.25, wL=0.35, and wS=0.4, which concurs with the 

previous experiments: where all three social metadata features seem important in extracting meaningful events. One could even 
suggest that the semantic feature dimension (wS=0.4) has a slightly better impact on event detection, compared with its temporal 
(wT=0.25) and spatial (wL=0.35) counterparts, and that the impact of the temporal feature seems relatively less important than the 

other two. Yet by visualizing the variations of all three parameters w.r.t. NMI in Figure 13, one can also realize that the latter 
observation does not seem to hold or generalize given the fluctuations of the weights in the experimental process. 

 
 

 

 

 

 

 
a. Experiment 1: Impact of varying wT  b. Experiment 2: Impact of varying wL c. Experiment 3: Impact of varying wS 

 

 

Figure 12. Visualiz ing NMI and f-score results highlighting the impact of temporal, spatial, and semantic features on the event detection task. 
 

Discussion: Results in Experiments 1-to-4 highlight three main observations: First, all three dimensions seem to be almost 
equally important in extracting meaningful events, since the best results were obtained with close weight values for wT, wL, and 
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wS. Second, considering the semantic descriptions of images and their semantic similarities is beneficial for event extraction since 
both NMI and f-score regularly increase with the increase of parameter wS (as long as the weights of the temporal and spatial 
dimensions are also significant). Third, considering semantic information only (neglecting temporal and spatial dimensions, i.e., 

wT = wL = 0 and wS=1), or considering temporal only or spatial only information, produces lower quality results, which points 
back to our first observation: integrating all dimensions seems to be key in improving event extraction quality. 

 

Table 2. The top ten results obtained in Experiment 4, by 

varying the temporal, spatial, and semantic parameter values. 

wT wL wS NMI F-score 
0.25 0.35 0.4 0.9943 0.9845 

0.35 0.4 0.25 0.9942 0.9844 

0.3334 0.3334 0.3334 0.9941 0.9841 

0.4 0.35 0.25 0.994 0.9835 

0.25 0.4 0.35 0.9937 0.9834 

0.3 0.45 0.25 0.9936 0.9831 

0.25 0.45 0.3 0.9934 0.9826 

0.25 0.3 0.45 0.9933 0.9826 

0.35 0.25 0.4 0.9924 0.9793 

0.4 0.25 0.35 0.9924 0.9789 

0.45 0.3 0.25 0.9924 0.9793 

0.3 0.25 0.45 0.9916 0.9778 

0.45 0.25 0.3 0.9916 0.9769 
 

 
 

 
 

 

Figure 13. Visualiz ing parameter weight variations 

w.r.t . NMI (a similar graph can be obtained                 

w.r.t . f-score). 
 

Note that identifying and fine-tuning the parametric weight values of social media object features (and other system 

parameters) can be handled automatically as an optimization problem, such that parameters should be chosen to maximize event 
detection quality (through some cost function such as NMI or f-score). This can be solved using a number of known techniques 

that apply linear programming and/or machine learning to identify the best weights for a given problem class, e.g., [32, 42, 65]. 
The main idea is to assign a higher (lower) weight to every (combination of) parameter(s), acting like contrast filters in image 
processing by increasing the contrast on input matrixes. Providing such a capability, in addition to manual tuning, would enable 

the user to start from a sensible choice of values (e.g., identical weight parameters to consider all features equally, i.e., wT = wL= 
wS = 0.3334) and then optimize and adapt the event identification process following the scenario and the nature of the data at 
hand, giving more emphasis to the temporal, spatial, or (inclusive) semantic features of the data objects being compared. We do 

not further discuss parameter weight optimization here since it is out of the scope of this paper (to be addressed in a future study). 

5.3.2. Comparative Study 

Table 3 summarizes the main differences between our method and existing social event detection methods. In short, our approach: 
i) provides a generic representation model that can describe any kind of social metadata, ii) does not require any predefined clues 
to identify events, iii) considers the semantic meaning associated with metadata using a reference lexical knowledge base, iv) 

combines three main event descriptive features: time, space, and semantics, allowing the user to fine-tune their impact in the event 
detection process, v) describes the extracted events following the same generic representation model used to describe social media 
objects, and most importantly: v) identifies different kinds of relationships (directional, metric, and topological) that can exist 

between events, which are not addressed in most existing methods. 
We experimentally compare our method, considering the best results obtained via our optimal parametric configuration 

(wT=0.25, wL=0.35, and wS=0.4), with alternative solutions, namely approaches that have also adopted the MediaEvalSED 2013 
and 2014 datasets [33, 77] as benchmarks for cluster-based event detection. Results in Table 4 show that our approach is able to 
improve the event extraction process. This is mainly due to the fact that our solution considers the semantic descriptions and 

semantic similarities of user contributed metadata in the aggregated similarity evaluation process when performing similarity -
based clustering, whereas existing methods focus mainly on the temporal/spatial aspects. Most methods, e.g., [58, 69, 86, 87], 
consider the images‟ textual descriptions by performing syntactic processing (using term frequency  or n-gram vector 

comparisons) but disregard the semantic meaning of the text. The approach in [38] considers the images‟ spatial features only to 
initially cluster the collection of images (temporal features are used only if spatial features are not available), and then only uses 

semantic similarity to refine/merge the produced clusters (rather than integrating semantics in the initial clustering process), while 
the approach in [59] expands the images‟ textual descriptions by identifying the synonyms and hypernyms of every term, 
producing expanded bag-of-words representations which are then compared using a typical syntactic similarity measure (i.e., 

cosine). The authors in [37, 87] consider, in addition to the temporal, spatial, and textual features, some of the images visual 
properties using adaptations of the bag-of-visual-words (BoVW) model defined on the images‟ color and texture features. Yet, 
results in Table 4.b show that considering visual features in both [37, 87] in did not improve event detection quality28. 

                                                             
28 Note that varying the training set size does not affect per formance  levels in our case since we  adopt an unsupervised approach in our study. Yet, varying training set size 

in a supervised context would be essential to evaluating the effectiveness of the proposed solution. 
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Table 3. Characteristics of main alternative methods for event detection from shared social media data on the Web. 

Approach Method Data type Data source 
Temporal 

feature 
Spatial 
feature 

Semantic 
feature 

Other 
features 

Weighted 
features 

External 
resource 

Event 
relationships 

Psallidas et al. [73] 

U
n

su
pe

rv
is

e
d 

(c
lu

st
er

in
g

) 

Tweet Twitter posts √ √ ×
29

 
Publisher 

(who) 
× URL × 

Ling and Abhishek [52] Photo Flickr photos √ √ × × × × × 
Liu et al. [53] Photo EventMedia √ √ × × × × × 

Rafailidis et al.  [75] Photo & Video MediaEval √ √ × × × × × 

Zaharieva et al. [103, 104] Photo MediaEval √ √ ×
30

 × × × × 

Gupta et al. [38] Photo & Video MediaEval √ √ √ × × WordNet × 

Manchon-Vizuete and            
Giro-i-Nieto [58]  

Photo & Video MediaEval √ √ ×29 Author (who) × × × 

Manchon-Vizuete et al. [59]       Photo & Video MediaEval √ √ ×29 
Author (who) 

Visual (BoVW) 
× × × 

Becker et al. [10] 

S
u

p
er

v
is

ed
 

(C
la

ss
if
ic

a
ti
o

n)
 

Tweet Twitter posts √ √ ×29 × × 
URL, and 

Upcoming 
Yahoo API 

× 

Liu X., 2011 [54] Text, Photo & Video 
Flickr photos and 
YouTube videos 

√ √ √ × × LOD
31

, and 
WordNet 

× 

Becker et al. [11] Photo & Video 
Twitter, YouTube, 

and Flickr 
√ √ × × × × × 

Becker et al. [12] 

H
y

br
id

 

Photo Flickr photos √ √ × × × × × 

Wistuba and Lars [100] Photo & Video MediaEval √ √ × × × × × 
Papaoikonomou et al. [71] Photo & Video MediaEval √ √ × × × × × 

Sutanto and Nayak [86] Photo & Video MediaEval √ √ ×29 × × × × 

Sutanto and Nayak [87] Photo MediaEval √ √ ×29 Visual (BoVW) × × × 
Nguyen et al. [69] Photo & Video MediaEval √ √ ×29 Author (who) × × × 

Guo et al. [37] Photo MediaEval √ √ ×29 Visual (BoVW) × × × 

Gregor L. et al. [36] News articles News Feed √ ×
32

 ×29 Agent (who) × 
GeoNames, 
and DMoz 

× 

Rospocher M. et al. [79] News articles News Feed √ √ √ Agent (who) × 
DBPedia,  

and NAF
33

 
×

34
 

           

Our Approach (SEDDaL) 
Unsupervised 
(clustering) 

Photo & Video 

Flickr, YouTube, 

Twitter, & 

MediaEval 

√ √ √ × √ WordNet √ 

 

 

Nonetheless, results in Table 4 show that our approach‟s improvement in event detection effectiveness seems relatively small 
compared with existing solutions, considering both MediaEvalSED 2013 and 2014 datasets. This is due to two reasons: i) the 

nature of social-based events which can be detected fairly accurately using temporal and spatial data only (which is done with 
most existing solutions), and ii) certain existing methods consider some form of syntactic textual similarity evaluation or partly 
consider semantic meaning (e.g., counting the number of common synonyms and hypernyms) which a lso improves their 

performance. Here, our contribution is two-fold: i) our results show that including knowledge-based semantics and full-fledged 
semantic similarity evaluation further improves quality, even though by a relatively reduced margin (since we are competing at 
the upper tier of the performance scale), and most importantly ii) our approach goes farther than event detection, to represe nt 

events and extract their different relationships (metric, topological, and directional, following all three temporal, spatial, and 
semantic dimensions) in a generic representation model. This is central to allow event-based CK representation later on, and 

requires additional (semantic) processing which is not performed by most existing methods.  
Note that further improvement to the quality of the event extraction process could be obtained by utilizing more accurate 

word sense disambiguation and semantic analysis techniques. While we adopt the commonly used simplified LESK algorithm 

[98] in our current implementation, yet, exploring more recent and advanced algorithms, e.g., SSI [67] and UKB [2], could help 
identify more accurate semantic representations of social media objects based on their textual metadata. In addition, while we 
utilize legacy node-based [101], edge-based [51], and gloss-based methods [9] to evaluate the semantic similarity between pairs 

of individual concepts (describing objects or events), yet exploring more recent approaches, e.g., for evaluating the semantic 
similarity between pairs of text sequences [3], or between digital item descriptions [35], could help further improve both the 

quality and performance of the event extraction process. A dedicated empirical study comparing and evaluating the impact of t he 
latter techniques within the context of our framework is reported to a future extension of this work. 

 

5.4. Event Relatioships Identification 

We have also evaluated our approach‟s effectiveness in identifying the different directional, metric, and topological relationships 

between events. For this purpose, we generated 100 synthetic event representations (consisting of event feature coverages and 
their representative points) following MRSM, and then varied the event descriptions to highlight different relationship 
distributions. As a result, we underline the following observations.  

                                                             
29 Processing textual descriptions syntactically, without considering their semantic meaning. 
30 Extracting latent semantics fro m the statistical analysis of textual descriptions, i.e., implicit semantic concepts which do not align with human-interpretable concepts [90]. 
31 Linked Open Data 
32 Location information is extracted a fter the events have been identified. 
33 NLP Annotation Framework, available at: http://wordpress.let.vupr.nl/naf/ 
34 Identifies linguistic-based entity-event relationships (e.g., <Porsche, AquiredBy, Volkswagen>), rather than directional, metric, and topological event-event relationships 

following the temporal, spatial, and semantic event feature di mensions targeted in our study. 



 

 

Table 4.  Comparison with alternative event detection methods. 
 

 

 
 

a. Results obtained using the MediaEvalSED 2013 dataset 
 

Method Features NMI F-Score 

Gupta et al. [38] 
Temporal (partly), 

Spatial,  
Semantic (partly) 

0.1802 0.1426 

Sutltano and Nayak [86] 
Temporal,  

Spatial, 
Textual 

0.9540 0.8120 

Manchon-Vizuete and            
Giro-i-Nieto [58] 

Temporal,  
Spatial,  
Textual 

0.9731 0.8833 

Nguyen et al. [69] 
Temporal,  

Spatial,  
Textual 

0.9849 0.9320 

Our Method (SEDDaL) 
Temporal, 

Spatial, 
Semantic 

0.9865 0.9435 

 

 

b. Results obtained using the MediaEvalSED 2014 dataset 
 

Method Features NMI F-Score 

Guo et al. [37] 

Temporal,  
Spatial,  
Textual,  

Visual (BoVW) 

0.9018 0.7525 

Sultano et Nayak [87] 

Temporal,  
Spatial,  
Textual, 

Visual (BoVW) 

0.9024 0.7533 

Manchon-Vizuete et al. [59] 

Temporal,  
Spatial,  
User ID, 

 Semantic (partly) 

0.9820 0.9240 

Zaharieva et al. [103] 
Temporal,  

Spatial,  
Textual 

0.9866 0.9386 

Our Method (SEDDaL) 
Temporal, 

Spatial, 
Semantic 

0.9880 0.9430 

 

 
 

First, our approach accurately identifies all directional relationships, following both temporal and spatial dimensions , 

producing f-score = 1 at all times, since the latter are identified based on crisp and exact rules35.  
Second, our approach identifies metric relationships: far and near w.r.t. all three MRSM dimensions, yet with different 

accuracy levels depending on the dimension specific similarity thresholds (ThreshT, ThreshL, and ThreshS) utilized to distinguish 
between the two relationships. Figure 14 shows the results obtained with the semantic dimension36, on a distribution consisting of: 
50 S_far and 50 S_near relationships, centered on ThreshS=0.3, following a normal distribution from 0 to 1. Results show that all 

S_near relationships are correctly identified at ThreshS=0.3 (f-score=1), such that: i) the number of false positives increases when 
ThreshS increases from 0.3-to-1, highlighting a decrease in precision from 1-to-0.5 (minimum precision=50 is obtained when all 

50 S_far relationships are considered as false S_near relationships, cf. Fig. 15 a), and ii) the number of false negatives (i.e., the 
number of S_near relationships that are missed) increases when ThreshS decreases from 0.3-to-0, highlighting a decrease in recall 
from 1-to-0 (minimum recall=0 is reached when all 50 S_near relationships are disregarded at ThreshS=0). The behavior of our 

solution in detecting the S_far relationships, reflected in the results in Figure 14, is inversely proportional to that of detecting 
S_near relationships, which conforms with their definition (if the metric relationship is not near, then it is far, and vice-versa, cf. 
Section 4.4.2, hence detecting more near relationships means detecting less far ones, and vice-versa). 

 
 

 

 

 

 

 
a. Precision b. Recall 

 

c. F-score 
 

Figure 14. Effectiveness in identifying semantic metric relationships 

 

Third, our approach identifies all topological relationships, following both temporal and spatial dimensions, producing f-

score=1 at all times, since the latter are identified based on crisp and exact rules (similarly to directional ones). The same goes for 

the S_inlude topological relationship following the semantic dimension (which can be exactly identified based on the product of 
the semantic enclosure vectors of the concerned events). As for the other semantic topological relationships: S_equal, S_intersect, 
and S_disjoint, their accurate identification depends on the similarity thresholds (ThreshEqual and ThreshDisjoint) utilized to 

distinguish between the three relationships (similarly to metric ones). 
Figure 15 and Figure 16 show the precision, recall, and f-score results obtained with a distribution consisting of: 25 equal, 25 

include, 25 intersect, and 25 disjoint relationships, centered on ThreshEqual = 0.65 and ThreshDisjoint = 0.35, following normal 

                                                             
35 F-score graphs are omitted for directional relationships since they only show one single and constant value: f-score = 1.  
36

 Similar results are obtained with the temporal and spatial dimensions, and thus are omitted here for ease  of presentation. 
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distributions from 0-to-1. Figure 15 shows the results obtained when varying ThreshEqual to identify S_equal and S_intersect, 
considering a fixed ThreshDisjoint=0.35 (its optimal value in this experiment). Figure 16 shows the results obtained when varying 
ThreshDisjoint to identify S_intersect and S_disjoint, considering a fixed ThreshEqual=0.65 (its optimal value in this experiment).  
 
 

 

 

 

 

 
 

a. Precision 
 

b. Recall 
 

 

c. F-score 
 
 

Figure 15. Effectiveness in identifying semantic topological relationships: S_equal and S_intersect, when varying ThreshEqual. 

 

Results in Figure 15 show that all S_equal relationships are correctly identified at ThreshS=0.65 (f-score=1), such that: i) the 
number of false positives increases when ThreshEqual decreases from 0.65-to-0.35, highlighting a decrease in precision from 1-to-

0.5 (minimum precision=0.5 is obtained when all 25 S_intersect relationships are considered as false S_equal relationships, cf. 
Figure 15.a), and ii) the number of false negatives (i.e., the number of S_equal relationships that are missed) increases when 

ThreshEqual increases from 0.65-to-1, highlighting a decrease in recall from 1-to-0 (minimum recall=0 is reached when all 25 
S_equal relationships are disregarded at ThreshEqual = 1, Figure 15.b). Results for detecting S_intersect relationships are inversely 
proportional to those of detecting S_equal ones, which is expected following their definition (the topological relationship that can 

occur on either side of ThreshEqual is S_equal or S_intersect: if it is not S_equal, then it is S_intersect, and vice-versa). 
 

 

 

 

 

 

 
 

a. Precision 
 

b. Recall 
 

 

c. F-score 
 
 

Figure 16. Effectiveness in identifying semantic topological relationships: S_intersect and S_disjoint, when varying ThreshDisjoint. 

 

Similar results are obtained in Figure 16, where all S_disjoint relationships are correctly identified at ThreshDisjoint = 0.35 (f-

score=1), such that: i) the number of false positives increases when ThreshEqual increases from 0.35-to-0.65, highlighting a 
decrease in precision from 1-to-0.5 (minimum precision=0.5 is obtained when all 25 S_disjoint relationships are considered as 

false S_intersect relationships, cf. Figure 16.a), and ii) the number of false negatives (i.e., the number of S_equal relationships 
that are missed) increases when ThreshDisjoint decreases from 0.35-to-0, highlighting a decrease in recall from 1-to-0 (minimum 
recall=0 is reached when all 25 S_disjoint relationships are disregarded at ThreshDisjoint=0, Figure 16.b). Results for detecting 

S_intersect relationships are inversely proportional to those of detecting S_disjoint ones, which conforms with their definition. 
Note that a correlation can be identified between the threshold values and the distribution of event relationships, as well a s the 
interplay between ThreshEqual and ThreshDisjoint. This can be inferred using learning or regression based optimization techniques as 

described in Section 4.2, which is outside the scope of this study. 
 

5.5. Time Performance 

Time experiments were carried out on an HP ProLiant ML350 Generation 5 (G5) Dual-Core Intel ® Xeon
TM

 5000 processor with 

2.66 GHz processing speed and 16 GB of RAM. Images from the MediaEvalSED 2013 dataset were utilized as benchmark. As 
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shown in Section 4.5, our SEDDaL framework solution is of O(|N|
2
 |KB| depth(KB)) where |N| designates the number of social 

media objects being processed, |KB| the number of concepts in the reference knowledge base (we utilize WordNet 3.0), and 
depth(KB) its maximum depth. It mainly comes down to the complexity of our event detection (clustering based) process which 

we evaluate in Figure 17.a, considering each of MRSM‟s dimensions separately (temporal only: wT=1, wL=wS=0, spatial only: 

wT=1, wL=wS=0; and semantic only, wT=1, wL=wS=0) as well all three dimensions put together (wT0, wL0, wS0). Results in 
Figure 17.a show that time grows in a polynomial fashion with the dataset size, where a clearly recognizable overhead is added 

when considering the semantic dimension. This concurs with our theoretical complexity analysis where performing semantic 

similarity evaluation requires an extra O(|KB| depth(KB)) time for every pair of social media objects being compared.  

We also evaluated the time required to identify the semantic relationships between events, which is of O(|E|
2
 |S|

2
 |KB|) 

where |E| is the number of extracted events and |S| the semantic coverage size (in number of semantic concepts) per event. We 
evaluate the time required to identify the semantic relationships between two individual events, which complexity simplifies to 
O(|S|

2
) when KB is fixed (i.e., size of WordNet). Figure 17.b shows the quadratic dependency on the combined events‟ semantic 

coverage sizes, which equally underlines a linear dependency on each event‟s semantic coverage size. Similar results (omitted 
here) highlight quadratic time dependency on the number of events. Note that the time performance of our event relationships 
identification process is negligible (in the order of seconds, Figure 17.b) compared with the time performance of the event 

detection process (in the order of thousands of seconds, cf. Figure 17.a) since the former depends on number of produced events 
|E|, which is always negligible compared with the number of objects |N| provided as input to the event detection process. In other 

words, empirical results confirm our complexity analysis and show that the overall performance of our approach is chiefly 
governed by the performance of the event detection process (cf. Section 4.5). 
 
 

 

 

 

 

 

a. Time performance of our event detection process 

w.r.t. dataset size and MRSM similarity measures 
 

b. Time performance when identifying all semantic 
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Figure 17. Time performance of our event detection process, w.r.t. dataset size and similarity evaluation measure. 
 

To sum up, Figure 17.c compares our solution‟s time performance with existing approaches. Results show that our solution 

(considering all three temporal, spatial, and semantic dimensions) is more time consuming compared with [58, 69, 86]. Referring 
to Figure 17.a, one can realize that the added overhead is due to evaluating the semantic meaning of the textual descriptions 
(whereas existing solutions in [58, 69, 86] perform syntactic-only processing). Yet, results also show that our approach is less 

expensive that Gupta et al.‟s semantic-aware solution in [38], since the latter performs semantic processing on all user contributed 
tags describing every object (amounting to multiple concepts per object), whereas our solution only considers the object‟ semantic 

coverage representative point (amounting to one single concept per object) in the semantic similarity evaluation process. 

6. Conclusion 

This paper introduces SEDDaL, a framework for Social Event Detection, Description and Linkage from different social media 
sources. It takes as input: a collection of social media objects from heterogeneous sources, and then produces as output a 
knowledge graph consisting of a collection of semantically meaningful events interconnected with meaningful relationships , 

forming the seed of so-called event-based collective knowledge (CK). SEDDaL consists of four modules for: i) describing social 
media objects in a generic Metadata Representation Space Model (MRSM) consisting of three composite dimensions: temporal 

(When), spatial (Where), and semantic (What), ii) evaluating the similarity between social media object descriptions following 
MRSM, iii) detecting events from similar objects using an adapted unsupervised learning algorithm, where events are represented 
as clusters of objects described in MRSM, and iv) identifying directional, metric, and topological relationships between events 

following MRSM‟s dimensions. This is the first study to provide a generic model for detecting and describing semantic-aware 
social events and identifying their different relationships. Experimental results highlight the quality and potential of our solution. 
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We are currently conducting additional tests to evaluate the scalability and adaptability of our solution when dealing with 
different kinds of objects (e.g., vector graphics, animations, music annotations, and videos) with different sizes and properties. 
We are also investigating auto-calibration and optimization techniques, e.g., [32, 42, 65], allowing to choose the proper unit of 

measurement and proper parameter values for each dimension of MRSM, considering the properties of the media objects being 
described, in order to adapt the outcome of the event detection process. Other challenges toward producing full-fledged event-
based CK within a ubiquitous computing environment include: i) investigating prominent spatiotemporal indexing structures, like 

HHCode, QuadTree, Octree, and GeoHash [7, 31, 39], to speed up data representation and access in MRSM and improve overall 
time performance, ii) expanding the current MRSM model to include user related information and additional semantics (i.e., Who, 
Why, and How dimensions), iii) investigating crowd-sourcing (using Wikipedia, or FOAF [4] for instance) as supplementary 

metadata sources, iv) developing dedicated event relationship inference rules (e.g., having 1

after

 2 and 2

after

 3 means we can 

transitively infer 1

after

 3) to enhance the produced knowledge graph‟s organization and expressiveness, and v) using formal 

description languages (such as RDF [99] and OWL [62]) to represent the event-based knowledge graph for querying and 

automated reasoning by (human users and) software agents, allowing event-based trust management (to distinguish and overcome 
“fake” events [68]), object recommendation (based on related events, e.g., recommend items to buy since they occur in related 

sales events [40]), and event prediction functionality (infer future events based on current ones [43]). 
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Appendix 
 

We briefly describe the concepts of semantic neighborhood, semantic enclosure, and semantic relatedness from [88, 89] 

originally developed to identify the semantic topological relationships between two RSS feeds. The same concepts can be utilized 
to identify the topological relationships between the semantic coverages of two events in MRSM:  

 

- Similarly to processing two RSS feeds, the two semantic coverages S(1) and S(2) being processed are represented as 

vectors of concepts, V1 and  V2, where the vector space dimensions represent each a distinct concept cm  S(1)  S(2),  

- The weight of a concept cm in vector Vi, noted 
 

i
mw is  [0, 1]. It is maximum, i.e., =1, when the concept cj   S(i). 

Otherwise, it is computed as the maximum semantic enclosure of cm within any of the concepts cj S(i): 
 

 

m i
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( (c ,S( ))      otherwise
 

i
mw

max SemInc

 




 (30) 

 

- The semantic enclosure of cm within another concept cj is computed as the asymmetric Jaccard similarity measure 
between the semantic neighborhoods of cm and cj: 

 

KB m KB j
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- The semantic neighborhood of concept cm, NeighKB(cm), consists of the set of all concepts related directly or transitively 
with cm via the hierarchical hypernymy (IsA) relationship in the reference knowledge base KB (e.g. WordNet). Sample 
concept neighborhoods are shown in Figure 21.b. 

- The semantic relatedness between two semantic coverages S(1) and S(2) is evaluated as the cosine similarity of their 
vector representations V1 and V2: 
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SemRel cosine    (32)  

 

As a result, the following rules are utilized to identify the semantic equality, intersection, and disjoinstness relationships 

between two semantic coverages S(1) and S(2): 
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(33) 

 

 

Figure 20. Basic semantic topological relationships and corresponding thresholds following [88, 89] (reported from Figure 9). 
 

While the equality, intersection, and disjointness relationships can be defined using semantic relatedness thresholds (cf. 

Figure 20), this is not the case for inclusion  relation, which is evaluated as the product of the semantic enclosure vectors of S(1) 
and S(2), designating whether S(1)‟s meaning is semantically included in S(2) or not. 

Consider for instance two semantic coverages extracted from Figure 6.e and f, which we designate as S(1) = {Steve Hogarth, 

concert, gig, live, marillion, weekend, montreal, music, progressive} and S(1) = {marillion, concert, rock , weekend, montreal} 

respectively, where 1 and 2 represent two hypothetical events37. Corresponding vector representations V1 and V2 are shown in 

                                                             
37  We consider hypothetical events here to simplify the computation example. 
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Figure 21.a. Here, one can realize that 1 
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 2 since the product of all weights in vector V1 considering all dimensions from 

S(1) and S(2), i.e., 
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 = 1. In other words, the semantic meaning of  2 is included in (or subsumed by) 1. 
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b. Extract from WordNet highlighting the semantic 

neighborhoods of concepts rock and music w.r.t. hypernymy. 
 

a. Vectors obtained when describing the semantic coverages from Figure 3.e and f 
 

Figure 21. Sample semantic enclosure vectors (a) and semantic neighborhoods (b) following  [88, 89]. 

 
The reader can refer to [88, 89]  for a more detailed description of the approach. 
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